Date
|
Time
|
Place
|
Room
|
Topics (from Syllabus)
|
Wednesday, Sept 17
|
17:00-19:00
|
TUT
|
|
1, 2
|
Thursday, Sept 18
|
17:00-19:00 |
TUT
|
|
3, 4
|
Friday, Sept 19
|
17:00-19:00 |
UTA
|
|
5, 6
|
Wednesday, Sept 24
|
17:00-19:00 |
UTA
|
|
7, 8
|
Thursday, Sept 25
|
17:00-19:00 |
UTA
|
|
9, 10
|
Lectures
·
Lecture 1: Preliminaries
·
Lecture 2: Generalized Inverses
·
Lecture 3: Least Squares
·
Lecture 4: Partitioned Matrices and
Determinants
·
Lecture 5: Matrix Volume
·
Illustrations with Maple
(written for Maple12, but should be compatible with older versions of Maple)
·
Lecture 6: The Group Inverse
·
Lecture 7: The Drazin Inverse
·
Lecture 8: The SVDecompoition
·
Lecture 9: Applications to Statistics
·
Lecture 10: Miscellaneous Applications
Reading
list (to be updated):
1.
A. B-I, Review of linear
algebra (given in chapter 0 of
this file, that includes also some front matter from the above mentioned text)
2. A. B-I, Bibliography
of generalized inverses (2002)
3. A. B-I, On error bounds for generalized inverses, SIAM J. Numer. Anal. 3(1966), 585-592
4. A. B-I, A volume associated with m x n matrices, Lin. Algeb. and its Appl. 167(1992),
87-111
5. A. B-I, The change of variables formula
using matrix volume, SIAM Journal
on Matrix Analysis 21(1999), 300-312
6. A. B-I, An application of the matrix volume
in probability, Lin. Algeb.
and its Appl. 321(2001), 9-25
7. A. B-I, The Moore of the Moore-Penrose inverse, Electron. J. Lin. Algeb. 9(2002),
150-157
8. J.W. Blattner, Bordered matrices, J. Soc. Indust. Appl. Math. 10(1962),
528-533
9. F. Burns, D. Carlson, E.
Haynsworth and T. Markham, Generalized
inverse formulas using the Schur complement, SIAM J. Appl. Math. 26(1974),
254-259
10.
S.L. Campbell, The Drazin inverse of an
infinite matrix, SIAM J. Appl.
Math. 31(1976), 492-503
11.
S.L. Campbell, Index two
linear time-varying singular system of differential equations, SIAM J. Alg. Disc. Meth. 4(1983),
237-243
12.
S.L. Campbell, C.D. Meyer and N.J. Rose, Applications of the Drazin inverse to linear
systems of differential equations with singular constant coefficients, SIAM J. Appl. Math. 31(1976),
411-425
13.
D. Constales, A closed from formula
for the Moore-Penrose inverse of a complex matrix of given rank, Acta Math. Hungar. 80(1998),
83-88
14.
M.P. Drazin, Pseudo-inverses
in associative rings and semigroups, Amer. Math. Monthly 65(1958), 506-514
15.
A. Galantai and Cs. J. Hegedus, Jordan’s principal angles in
complex vector spaces, Numer.
Lin. Algeb. Appl. 13(2006), 589-598
16.
T.N.E. Greville, Some
applications of the pseudoinverse of a matrix, SIAM Rev.
2(1960), 15-22
17.
P. Kunkel and V. Mehrmann, Generalized inverses of differential-algebraic
operators, SIAM J. Matrix
Anal. Appl. 17(1996), 426-442
18.
Y. Levin and A. B-I, A Newton method for systems of m
equations in n variables, Nonlinear
Analysis 47 (2001), 1961-1971
19.
C.D. Meyer, The
role of the group generalized inverse in the theory of finite Markov chains,
SIAM Rev. 17(1975),
443-464
20.
J. Miao and A. B-I, On principal angles between
subspaces in R^n, Lin. Algeb.
Appl. 171(1992), 81-98
21.
J. Miao and A. B-I, On l_p approximate
solutions of linear equations, Lin.
Algeb. Appl. 199(1994), 305-327
22.
W.T. Reid, Generalized
Green’s matrices for two-point boundary problems, SIAM J. Appl. Math. 15(1967),
856-870
23.
A. Rieder and T. Schuster, The approximate inverse in action with an application
to computerized tomography, SIAM
J. Numer. Anal. 37(2000), 1909-1929
24.
C.F. Van Loan, Generalizing
the SVD, SIAM J. Numer. Anal. 13(1976),
76-83