AN APPLICATION OF THE MATRIX VOLUME IN PROBABILITY

ADI BEN-ISRAEL

Dedicated to Professor Hans Schneider on his Seventieth Birthday

ABSTRACT. Given an n-dimensional random variable \mathbf{X} with a joint density $f_{\mathbf{X}}(x_1, \dots, x_n)$, the density of $\mathbf{Y} = h(\mathbf{X})$ is computed as a surface integral of $f_{\mathbf{X}}$ in two cases: (a) h linear, and (b) h sum of squares. The integrals use the volume of the Jacobian matrix in a change-of-variables formula.

1. Introduction

The abbreviation RV of Random Variable is used throughout. Consider n RV's $(\mathbf{X}_1, \dots, \mathbf{X}_n)$ with a given joint density $f_{\mathbf{X}}(x_1, \dots, x_n)$ and a RV

$$\mathbf{Y} = h(\mathbf{X}_1, \cdots, \mathbf{X}_n) \tag{1}$$

defined by the mapping $h: \mathbb{R}^n \to \mathbb{R}$. The density function $f_{\mathbf{Y}}(y)$ of \mathbf{Y} is derived here in two special cases.

$$h \text{ linear}: h(\mathbf{X}_1, \cdots, \mathbf{X}_n) = \sum_{i=1}^n \xi_i \mathbf{X}_i, \text{ see Corollary 1},$$
 (2)

$$h \text{ sum of squares}: h(\mathbf{X}_1, \dots, \mathbf{X}_n) = \sum_{i=1}^n \mathbf{X}_i^2, \text{ Corollary 2}.$$
 (3)

In both cases, the density $f_{\mathbf{Y}}(y)$ is computed as an integral of $f_{\mathbf{X}}$ on the surface

$$\mathcal{V}(y) := \{ \mathbf{x} \in \mathbb{R}^n : h(\mathbf{x}) = y \} ,$$

that is a hyperplane for (2) and a sphere for (3). These integrals are elementary, and computationally feasible, as illustrated in Appendix A with the computer algebra package DERIVE [5]. Both results are consequences of Theorem 1, and a comparison between two integrations, one "classical" and the other using the change-of-variables formula of [2],

$$\int_{\mathcal{V}} f(\mathbf{v}) d\mathbf{v} = \int_{\mathcal{U}} (f \circ \phi)(\mathbf{u}) \operatorname{vol} J_{\phi}(\mathbf{u}) d\mathbf{u} , \qquad (4)$$

where:

- $\mathcal{U} \subset \mathbb{R}^n$, $\mathcal{V} \subset \mathbb{R}^m$ and $m \geq n$,
- f a real-valued function integrable on \mathcal{V} ,
- ϕ is a sufficiently well-behaved function: $\mathcal{U} \to \mathcal{V}$,
- \circ denotes composition, here $(f \circ \phi)(\mathbf{u}) := f(\phi(\mathbf{u}))$,

Date: 13 June 1998. Revised May 30, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary 15A15, 60D05; Secondary 26B15.

Key words and phrases. Determinants, Jacobians, matrix volume, change-of-variables in integration, surface integrals, geometric probabilities, distributions, Radon transforms.

• J_{ϕ} is the Jacobi matrix (or Jacobian) of ϕ ,

$$J_{\phi} := \left(\frac{\partial \phi_i}{\partial u_j}\right)$$
, also denoted $\frac{\partial (v_1, v_2, \cdots, v_m)}{\partial (u_1, u_2, \cdots, u_n)}$,

representing the derivative of ϕ ,

- J_{ϕ} is assumed of full-column rank throughout \mathcal{U} , and
- vol J_{ϕ} denotes the *volume* of J_{ϕ} , see e.g. [1].

Recall that the volume of an $m \times n$ matrix of rank r is

$$\operatorname{vol} A := \sqrt{\sum_{(I,J)\in\mathcal{N}} \det^2 A_{IJ}} , \qquad (5)$$

where A_{IJ} is the submatrix of A with rows I and columns J, and \mathcal{N} is the index set of $r \times r$ nonsingular submatrices of A. Alternatively, vol A is the product of the singular values of A. If A is of full column rank, its volume is simply

$$vol A = \sqrt{\det A^T A} . (6)$$

If m = n then vol $J_{\phi} = |\det J_{\phi}|$, and (4) gives the classical result,

$$\int_{\mathcal{V}} f(\mathbf{v}) d\mathbf{v} = \int_{\mathcal{U}} (f \circ \phi)(\mathbf{u}) |\det J_{\phi}(\mathbf{u})| d\mathbf{u}.$$
 (7)

The change-of-variables formula (4) is used here for surface integrals, over surfaces S in \mathbb{R}^n given by

$$x_n := g(x_1, x_2, \dots, x_{n-1}).$$
 (8)

Let \mathcal{V} be a subset on \mathcal{S} , and let \mathcal{U} be the projection of \mathcal{V} on \mathbb{R}^{n-1} , the space of variables (x_1,\ldots,x_{n-1}) . The surface \mathcal{S} is the graph of the mapping $\phi:\mathcal{U}\to\mathcal{V}$, given by its components $\phi:=(\phi_1,\phi_2,\ldots,\phi_n)$,

$$\phi_i(x_1, \dots, x_{n-1}) := x_i, i \in \overline{1, n-1}$$

 $\phi_n(x_1, \dots, x_{n-1}) := g(x_1, \dots, x_{n-1})$

The Jacobi matrix of ϕ is

$$J_{\phi} \; = \; \left(egin{array}{ccccc} 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ 0 & 0 & \ddots & 0 & 0 \ 0 & 0 & \cdots & 1 & 0 \ 0 & 0 & \cdots & 0 & 1 \ g_{x_1} & g_{x_2} & \cdots & g_{x_{n-2}} & g_{x_{n-1}} \end{array}
ight)$$

where subscripts denote partial differentiation: $g_{x_1} = \frac{\partial g}{\partial x_1}$, etc. The volume is

$$vol J_{\phi} = \sqrt{1 + \sum_{i=1}^{n-1} g_{x_i}^2}$$
 (9)

For any function f integrable on \mathcal{V} we therefore have, from (4),

$$\int_{\mathcal{V}} f(x_1, \dots, x_{n-1}, x_n) dV = \int_{\mathcal{U}} f(x_1, \dots, x_{n-1}, g(x_1, \dots, x_{n-1})) \sqrt{1 + \sum_{i=1}^{n-1} g_{x_i}^2} dx_1 \dots dx_{n-1} \quad (10)$$

Notation: We use the Euclidean norm $||(x_1, \dots, x_n)|| := \sqrt{\sum_{i=1}^n |x_i|^2}$. For a random variable **X** we denote

 $F_{\mathbf{X}}(x) := \text{Prob}\{\mathbf{X} \leq x\}$, the distribution function, $f_{\mathbf{X}}(x) := \frac{d}{dx}F_{\mathbf{X}}(x)$, the density function, $\text{Var}\{\mathbf{X}\}$, the variance,

 $\mathbf{X} \sim U(S)$ the fact that \mathbf{X} is uniformly distributed over the set S,

 $\mathbf{X} \sim N(\mu, \sigma)$ normally distributed with $\mathrm{E}\{\mathbf{X}\} = \mu$, $\mathrm{Var}\{\mathbf{X}\} = \sigma^2$,

 $\mathbf{X} \sim \beta(p,q)$ beta(p,q) distributed, see (B.5).

Blanket assumption: Throughout this paper all random variables are absolutely continuous, and the indicated densities exist.

2. Probability densities and surface integrals

Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ have joint density $f_{\mathbf{X}}(x_1, \dots, x_n)$ and let

$$y = h(x_1, \cdots, x_n) \tag{11}$$

where $h: \mathbb{R}^n \to \mathbb{R}$ is sufficiently well-behaved, in particular $\frac{\partial h}{\partial x_n} \neq 0$, and (11) can be solved for x_n ,

$$x_n = h^{-1}(y|x_1, \cdots, x_{n-1}) \tag{12}$$

with x_1, \dots, x_{n-1} as parameters. By changing variables from $\{x_1, \dots, x_n\}$ to $\{x_1, \dots, x_{n-1}, y\}$, and using the fact

$$\det\left(\frac{\partial(x_1,\cdots,x_n)}{\partial(x_1,\cdots,x_{n-1},y)}\right) = \frac{\partial h^{-1}}{\partial y}$$
(13)

we write the density of $\mathbf{Y} = h(\mathbf{X}_1, \dots, \mathbf{X}_n)$ as

$$f_{\mathbf{Y}}(y) = \int_{\mathbb{R}^{n-1}} f_{\mathbf{X}}(x_1, \dots, x_{n-1}, h^{-1}(y|x_1, \dots, x_{n-1})) \left| \frac{\partial h^{-1}}{\partial y} \right| dx_1 \dots dx_{n-1}$$
 (14)

Let $\mathcal{V}(y)$ be the surface given by (11), represented as

$$\begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ h^{-1}(y|x_1, \cdots, x_{n-1}) \end{pmatrix} = \phi \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

$$(15)$$

Then the surface integral of $f_{\mathbf{X}}$ over $\mathcal{V}(y)$ is given, by (10), as

$$\int_{\mathcal{V}(y)} f_{\mathbf{X}} = \int_{\mathbb{R}^{n-1}} f_{\mathbf{X}}(x_1, \dots, x_{n-1}, h^{-1}(y | x_1, \dots, x_{n-1})) \sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\partial h^{-1}}{\partial x_i}\right)^2} dx_1 \dots dx_{n-1}$$
 (16)

Theorem 1. If the ratio

$$\frac{\frac{\partial h^{-1}}{\partial y}}{\sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\partial h^{-1}}{\partial x_i}\right)^2}} \quad \text{does not depend on } x_1, \dots, x_{n-1} , \tag{17}$$

then

$$f_{\mathbf{Y}}(y) = \frac{\left|\frac{\partial h^{-1}}{\partial y}\right|}{\sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\partial h^{-1}}{\partial x_i}\right)^2}} \int_{\mathcal{V}(y)} f_{\mathbf{X}}$$
(18)

Proof. A comparison of (16) and (14) gives the density $f_{\mathbf{Y}}$ as the surface integral (18),

Condition (17) holds if $\mathcal{V}(y)$ is a hyperplane (see § 3) or a sphere, see § 4. In these two cases, covering many important probability distributions, the derivation (18) is simpler computationally than classical integration formulae, e.g. [3, Theorem 5.1.5], [7, Theorem 6-5.4] and transform methods, e.g. [10].

3. Hyperplanes

Let

$$y = h(x_1, \dots, x_n) := \sum_{i=1}^{n} \xi_i x_i$$
 (19)

where $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ is a given vector with $\xi_n \neq 0$. Then (12) becomes

$$x_n = h^{-1}(y|x_1, \dots, x_{n-1}) := \frac{y}{\xi_n} - \sum_{i=1}^{n-1} \frac{\xi_i}{\xi_n} x_i$$
 (20a)

with
$$\frac{\partial h^{-1}}{\partial y} = \frac{1}{\xi_n}$$
, $\sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\partial h^{-1}}{\partial x_i}\right)^2} = \sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\xi_i}{\xi_n}\right)^2} = \frac{\|\boldsymbol{\xi}\|}{|\xi_n|}$ (20b)

Condition (17) thus holds, and the density of $\sum \xi_i \mathbf{X}_i$ can be expressed as a surface integral of $f_{\mathbf{X}}$ on the hyperplane

$$\mathcal{H}(\boldsymbol{\xi}, y) := \left\{ \mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n \xi_i \, x_i = y \right\}$$
 (21)

also called the *Radon transform* $(\mathbf{R}f_{\mathbf{X}})(\boldsymbol{\xi}, y)$ of $f_{\mathbf{X}}$. The Radon transform can be computed as an integral on \mathbb{R}^{n-1} , see [2, Example 7],

$$(\mathbf{R}f_{\mathbf{X}})(\boldsymbol{\xi}, y) = \frac{\|\boldsymbol{\xi}\|}{|\xi_n|} \int_{\mathbb{R}^{n-1}} f_{\mathbf{X}}\left(x_1, \cdots, x_{n-1}, \frac{y}{\xi_n} - \sum_{i=1}^{n-1} \frac{\xi_i}{\xi_n} x_i\right) dx_1 dx_2 \cdots dx_{n-1}.$$
 (22)

The cases n=2 and n=3 are computed in (A.1) and (A.2) below.

Note: The normal vector $\boldsymbol{\xi}$ of the hyperplane (21) can be normalized, and can therefore be assumed a unit vector, see e.g. [4, Chapter 3] where the Radon transform with respect to a hyperplane

$$\mathcal{H}(\boldsymbol{\xi}^0, p) := \{ \mathbf{x} \in \mathbb{R}^n : \boldsymbol{\xi}^0 \cdot \mathbf{x} = p \} , \| \boldsymbol{\xi}^0 \| = 1 ,$$
 (23)

is represented as

$$\check{f}(p, \boldsymbol{\xi}^0) = \int f(\mathbf{x}) \, \delta(p - \boldsymbol{\xi}^0 \cdot \mathbf{x}) \, d\mathbf{x} ,$$

where $\delta(\cdot)$ is the Dirac delta function. If (21) and (23) represent the same hyperplane, then the correspondence between $(\mathbf{R}f_{\mathbf{X}})(\boldsymbol{\xi},y)$ and $\check{f}(p,\boldsymbol{\xi}^0)$ is given by

$$\boldsymbol{\xi}^0 = \frac{\boldsymbol{\xi}}{\|\boldsymbol{\xi}\|} \; , \; p = \frac{y}{\|\boldsymbol{\xi}\|} \; .$$

Corollary 1. Let $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n)$ be random variables with joint density $f_{\mathbf{X}}(x_1, x_2, \dots, x_n)$, and let $\mathbf{0} \neq \boldsymbol{\xi} \in \mathbb{R}^n$. The random variable

$$\mathbf{Y} := \sum_{i=1}^{n} \xi_i \, \mathbf{X}_i \tag{24}$$

has the density

$$f_{\mathbf{Y}}(y) = \frac{(\mathbf{R}f_{\mathbf{X}})(\boldsymbol{\xi}, y)}{\|\boldsymbol{\xi}\|}.$$
 (25)

Proof. Follows from (18), (20b) and (22).

Explanation of the factor $\|\boldsymbol{\xi}\|$ in (25): the distance between the hyperplanes $\mathcal{H}(\boldsymbol{\xi}, y)$ and $\mathcal{H}(\boldsymbol{\xi}, y + dy)$ is $dy/\|\boldsymbol{\xi}\|$.

Example 1 (*Bivariate normal distribution*). Let $(\mathbf{X}_1, \mathbf{X}_2)$ have the bivariate normal distribution with zero means and unit variances,

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2(1-\rho^2)}\right\}$$
(26)

and let $\mathbf{Y} := a \mathbf{X}_1 + b \mathbf{X}_2$. The density of \mathbf{Y} is, by (25),

$$f_{\mathbf{Y}}(y) = \frac{1}{\sqrt{a^2 + b^2}} (\mathbf{R} f_{\mathbf{X}})((a, b), y)$$

$$= \frac{1}{\sqrt{2\pi} \sqrt{a^2 + 2ab\rho + b^2}} \exp \left\{ -\frac{y^2}{2(a^2 + 2ab\rho + b^2)} \right\} , \text{ see (A.5)}.$$
 (27)

Therefore $a \mathbf{X}_1 + b \mathbf{X}_2 \sim N(0, \sqrt{a^2 + 2 \, a \, b \, \rho + b^2})$. In particular, $\mathbf{X}_1 + \mathbf{X}_2 \sim N(0, \sqrt{2(1+\rho)})$ and $\mathbf{X}_1 - \mathbf{X}_2 \sim N(0, \sqrt{2(1-\rho)})$.

Example 2 (*Uniform distribution*). Let $(\mathbf{X}_1, \mathbf{X}_2)$ be independent and uniformly distributed on [0, 1]. Their joint density is

$$f_{\mathbf{X}}(x_1, x_2) = \begin{cases} 1, & \text{if } 0 \le x_1, x_2 \le 1 \\ 0, & \text{otherwise} \end{cases}$$

and the density of $a \mathbf{X}_1 + b \mathbf{X}_2$ is, by (25),

$$f_{a \mathbf{X}_{1}+b \mathbf{X}_{2}}(y) = \frac{1}{\sqrt{a^{2}+b^{2}}} (\mathbf{R} f_{\mathbf{X}})((a,b), y)$$

$$= \frac{|y-a-b|-|y-a|-|y-b|+|y|}{2ab}, \text{ see (A.7)}.$$
(28)

In particular,

$$f_{\mathbf{X}_1 + \mathbf{X}_2}(y) = \begin{cases} y & , \text{ if } 0 \le y < 1\\ 2 - y & , \text{ if } 1 \le y \le 2\\ 0 & , \text{ otherwise} \end{cases}$$

a symmetric triangular distribution on [0, 2].

4. Spheres

Let

$$\mathcal{B}_n(r) := \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| \le r \}$$
, the *ball* of radius r , $\mathcal{S}_n(r) := \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| = r \}$, the *sphere* of radius r ,

both centered at the origin. Also,

$$v_n(r) := \text{ the } volume \text{ of } \mathcal{B}_n(r) ,$$

 $a_n(r) := \text{ the } area \text{ of } \mathcal{S}_n(r) ,$

where r is dropped if r = 1, so that

 $v_n := \text{ the volume of the unit ball } \mathcal{B}_n ,$ $a_n := \text{ the area of the unit sphere } \mathcal{S}_n .$

Clearly

$$v_n(r) = v_n r^n$$
, $a_n(r) = a_n r^{n-1}$, and $dv_n(r) = v'_n(r) dr = a_n(r) dr$, (29)

and it follows that

$$a_n = n v_n , \quad n = 2, 3, \cdots \tag{30}$$

The area of the unit sphere S_n is computed in Example 7 as

$$a_n = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}, \quad n = 2, 3, \cdots$$
 (31)

Let

$$y = h(x_1, \dots, x_n) := \sum_{i=1}^{n} x_i^2$$
 (32)

which has two solutions (12) for x_n , representing the upper and lower hemispheres,

$$x_n = h^{-1}(y|x_1, \dots, x_{n-1}) := \pm \sqrt{y - \sum_{i=1}^{n-1} x_i^2}$$
 (33a)

with
$$\frac{\partial h^{-1}}{\partial y} = \pm \frac{1}{2\sqrt{y - \sum_{i=1}^{n-1} x_i^2}}$$
, $\sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{\partial h^{-1}}{\partial x_i}\right)^2} = \frac{\sqrt{y}}{\sqrt{y - \sum_{i=1}^{n-1} x_i^2}}$ (33b)

Therefore condition (17) holds, and the density of $\sum \mathbf{X}_i^2$ is, by (18), expressed in terms of the surface integral of $f_{\mathbf{X}}$ on the sphere $\mathcal{S}_n(\sqrt{y})$ of radius \sqrt{y} .

Corollary 2. Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ have joint density $f_{\mathbf{X}}(x_1, \dots, x_n)$. The density of

$$Y = \sum_{i=1}^{n} \mathbf{X}_i^2 \tag{34}$$

is

$$f_{\mathbf{Y}}(y) = \frac{1}{2\sqrt{y}} \int_{\mathcal{S}_n(\sqrt{y})} f_{\mathbf{X}}$$
 (35)

where the integral is over the sphere $S_n(\sqrt{y})$ of radius \sqrt{y} , computed as an integral over the ball $\mathcal{B}_{n-1}(\sqrt{y})$,

$$\int_{\mathcal{S}_n(\sqrt{y})} f_{\mathbf{X}} =$$

$$\int_{\mathcal{B}_{n-1}(\sqrt{y})} \left[f_{\mathbf{X}} \left(x_1, \cdots, x_{n-1}, \sqrt{y - \sum_{i=1}^{n-1} x_i^2} \right) + f_{\mathbf{X}} \left(x_1, \cdots, x_{n-1}, -\sqrt{y - \sum_{i=1}^{n-1} x_i^2} \right) \right] \frac{\sqrt{y} \, dx_1 \cdots dx_{n-1}}{\sqrt{y - \sum_{i=1}^{n-1} x_i^2}}$$
(36)

Proof. (35) follows from (18) and (33b). The surface integral (36) is (10) with $g = h^{-1}$.

An explanation of the factor $2\sqrt{y}$ in (35): the width of the spherical shell bounded by the two spheres $S_n(\sqrt{y})$ and $S_n(\sqrt{y+dy})$ is the difference of radii

$$\sqrt{y+dy} - \sqrt{y} \approx \frac{dy}{2\sqrt{y}}$$

Example 3 (Spherical distribution). If the joint density of $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ is spherical

$$f_{\mathbf{X}}(x_1, \cdots, x_n) = p\left(\sum_{i=1}^n x_i^2\right)$$
(37)

then $\mathbf{Y} = \sum_{i=1}^{n} \mathbf{X}_{i}^{2}$ has the density

$$f_{\mathbf{Y}}(y) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2})} p(y) y^{\frac{n}{2}-1}$$
(38)

Proof. The surface integral of $f_{\mathbf{X}}$ over $\mathcal{S}_n(\sqrt{y})$ is

$$\int_{\mathcal{S}_n(\sqrt{y})} f_{\mathbf{X}} = p(y) a_{n-1}(\sqrt{y})$$

$$= p(y) \frac{2 \pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \sqrt{y}^{n-1}$$

by (31) and (29). The proof is completed by (35).

Example 4 (χ^2 distribution). If $\mathbf{X}_i \sim N(0,1)$ and are independent, $i \in \overline{1,n}$, their joint density is of the form (37),

$$f_{\mathbf{X}}(x_1, \dots, x_n) = (2\pi)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n x_i^2}{2}\right\}$$

and (38) gives,

$$f_{\mathbf{Y}}(y) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} y^{n/2-1} \exp\left\{-\frac{y}{2}\right\} ,$$
 (39)

the χ^2 distribution with n degrees of freedom.

Example 5 (Random directions in \mathbb{R}^n , [6, § I.10]). If $\mathbf{X} \sim U(\mathcal{S}_n)$ (uniform distribution on the unit sphere) the probability of a surface element on \mathcal{S}_n is, by (C.1),

$$\frac{dx_1 dx_2 \cdots dx_{n-1}}{a_n \sqrt{1 - \sum_{i=1}^{n-1} x_i^2}} \,. \tag{40}$$

Random points on S_n are also called *random directions*. We study the distributions of projections of random directions on lines and hyperplanes.

(a) Let \mathbf{L}_n be the length of the projection of a unit vector in \mathbb{R}^n on a fixed line through the origin, say the x_n -axis. Then \mathbf{L}_n has the density

$$f_{\mathbf{L}_n}(x) = \frac{2}{B(\frac{1}{2}, \frac{n-1}{2})} (1 - x^2)^{\frac{n-3}{2}},$$
 (41a)

and expected value
$$E\{\mathbf{L}_n\} = \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{n+1}{2})}$$
. (41b)

The density (41a) is simplest when n = 3, in which case $\mathbf{L}_3 \sim U([0, 1])$. This means that distances to a fixed plane through the center are uniformly distributed on \mathcal{S}_3 .

(b) The square L_n^2 has the beta distribution, see (B.5),

$$\mathbf{L}_n^2 \sim \beta\left(\frac{n-1}{2}, \frac{1}{2}\right) ,$$
 (42a)

with
$$E\{\mathbf{L}_n^2\} = \frac{1}{n}$$
, $Var\{\mathbf{L}_n^2\} = \frac{2(n-1)}{n^2(n+2)}$. (42b)

(c) Let \mathbf{H}_n be the length of the projection of a unit vector in \mathbb{R}^n on a fixed hyperplane passing through the origin, say the hyperplane orthogonal to the x_n -axis. Then \mathbf{H}_n has the density

$$f_{\mathbf{H}_n}(x) = \frac{2}{B(\frac{1}{2}, \frac{n-1}{2})} \frac{x^{n-2}}{\sqrt{1-x^2}},$$
 (43a)

and expected value
$$E\{\mathbf{H}_n\} = \frac{2}{n-1} \frac{\Gamma^2(\frac{n}{2})}{\Gamma^2(\frac{n-1}{2})}$$
. (43b)

(d) The square \mathbf{H}_n^2 has the beta distribution

$$\mathbf{H}_n^2 \sim \beta\left(\frac{1}{2}, \frac{n-1}{2}\right) ,$$
 (44a)

with
$$E\{\mathbf{H}_{n}^{2}\} = \frac{n-1}{n}$$
, $Var\{\mathbf{H}_{n}^{2}\} = \frac{2(n-1)}{n^{2}(n+2)}$. (44b)

Proof. (a) From $|x_n| = \sqrt{1 - \sum_{i=1}^{n-1} x_i^2}$ it follows that $|x_n| \le t$ is equivalent to $\sum_{i=1}^{n-1} x_i^2 \ge 1 - t^2$. Let

$$A(t) := \text{area } \{ \mathbf{x} \in \mathcal{S}_n : |x_n| \le t \}$$

Then \mathbf{L}_n has the distribution function

$$F_{\mathbf{L}_n}(x) = \operatorname{Prob}\left\{\mathbf{L}_n \le x\right\} = \frac{A(x)}{a_n}$$
.

The area A(x) is computed by

$$A(x) = 2 \int_{1-x^2 \le \sum_{i=1}^{n-1} x_i^2 \le 1} \frac{dx_1 \cdots dx_{n-1}}{\sqrt{1 - \sum_{i=1}^{n-1} x_i^2}}$$

$$= 2 a_{n-1} \int_{\sqrt{1-x^2}}^{1} \frac{r^{n-2} dr}{\sqrt{1-r^2}}, \text{ as in the computation of (C.3)}.$$
(45)

The density of \mathbf{L}_n is

$$f_{\mathbf{L}_n}(x) = \frac{d}{dx} F_{\mathbf{L}_n}(x) = \frac{A'(x)}{a_n} = \frac{2 a_{n-1}}{a_n} \left(-\frac{(1-x^2)^{\frac{n-2}{2}}}{x} \right) \left(-\frac{x}{\sqrt{1-x^2}} \right) = \frac{2 a_{n-1}}{a_n} (1-x^2)^{\frac{n-3}{2}}$$

and (41a) follows from (31). The expected value (41b) is obtained by routine integration.

(b) The distribution function of \mathbf{L}_n^2 is

$$F_{\mathbf{L}_n^2}(x) = \text{Prob}\left\{\mathbf{L}_n \le \sqrt{x}\right\} = \frac{2a_{n-1}}{a_n} \int_0^{\sqrt{x}} (1-y^2)^{\frac{n-3}{2}} dy$$
.

Differentiation gives (42a). The formulas (42b) then follow from (B.6) with $p = \frac{n-1}{2}$, $q = \frac{1}{2}$. (c) Let $A(t) = \text{area } \{\mathbf{x} \in \mathcal{S}_n : \sum_{i=1}^{n-1} x_i^2 \leq t^2\}$. Then

$$A(x) = 2 \int_{0 \le \sum_{i=1}^{n-1} x_i^2 \le x^2} \frac{dx_1 \cdots dx_{n-1}}{\sqrt{1 - \sum_{i=1}^{n-1} x_i^2}}$$

$$= 2(n-1)v_{n-1} \int_0^x \frac{r^{n-2}}{\sqrt{1 - r^2}} dr$$
(46)

The distribution function of \mathbf{H}_n is

$$F_{\mathbf{H}_n}(x) = \operatorname{Prob}\left\{\mathbf{H}_n \le x\right\} = \frac{A(x)}{a_n}$$

which is differentiated to give the density

$$f_{\mathbf{H}_n}(x) = \frac{A'(x)}{a_n}$$

= $\frac{2 a_{n-1}}{a_n} \frac{x^{n-2}}{\sqrt{1-x^2}}$, by (46),

proving (43a).

(d) The distribution function of \mathbf{H}_n^2 is

$$F_{\mathbf{H}_n^2}(x) = \text{Prob}\left\{\mathbf{H}_n \le \sqrt{x}\right\} = \frac{2 a_{n-1}}{a_n} \int_0^{\sqrt{x}} \frac{y^{n-2}}{\sqrt{1-y^2}} dy$$
.

Differentiation gives (44a). The formulas (44b) then follow from (B.6) with $p = \frac{1}{2}$, $q = \frac{n-1}{2}$.

Combining (42b) and (44b) we conclude

$$E\{L_n^2\} + E\{H_n^2\} = 1$$

as expected, since for any unit vector $\mathbf{x} = (x_1, \dots, x_{n-1}),$

$$x_n^2 + \left(\sum_{i=1}^{n-1} x_i^2\right) = \mathbf{L}_n^2 + \mathbf{H}_n^2 = 1$$

This also explains why \mathbf{L}_n^2 and \mathbf{H}_n^2 have the same variance.

Example 6 (Probabilistic proof). A probabilistic proof of (30) is given by writing

$$\frac{n v_n - a_n}{2 a_n} = \int_{\mathcal{B}_{n-1}} \left[n \sqrt{1 - \sum_{k=1}^{n-1} x_k^2} - \frac{1}{\sqrt{1 - \sum_{k=1}^{n-1} x_k^2}} \right] \frac{dx_1 \cdots dx_{n-1}}{a_n} , \text{ by (C.5) and (C.2)},$$

$$= \int_{\mathcal{B}_{n-1}} \left[(n-1) - n \sum_{k=1}^{n-1} x_k^2 \right] \frac{dx_1 \cdots dx_{n-1}}{a_n \sqrt{1 - \sum_{k=1}^{n-1} x_k^2}} . \tag{47}$$

By (40), this is the expected value of $(n-1) - n \sum_{k=1}^{n-1} \mathbf{X}_k^2$, for $(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n)$ uniformly distributed on \mathcal{S}_n . It then follows from (44b) that the RHS of (47) is zero, proving that $a_n = n v_n$.

References

- [1] A. Ben-Israel, A volume associated with $m \times n$ matrices, Lin. Algeb. Appl. 167(1992), 87–111.
- [2] A. Ben-Israel, The change of variables formula using matrix volume, SIAM J. Matrix Analysis 21 (1999), 300–312.
- [3] Z.W. Birnbaum, Introduction to Probability and Mathematical Statistics, Harper, 1962
- [4] S.R. Deans, The Radon Transform and Some of its Applications, Wiley, 1983/Krieger 1993.
- [5] Derive, Texas Instruments, http://www.ti.com/calc/docs/derive.htm
- [6] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, 1966
- [7] B. Harris, *Theory of Probability*, Addison-Wesley, 1966.
- [8] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics No. 17, Springer-Verlag, 1966.
- [9] F. Natterer, The Mathematics of Computerized Tomography, J. Wiley, 1986.
- [10] M.D. Springer, The Algebra of Random Variables, Wiley, 1979.

APPENDIX A: ILLUSTRATIONS WITH DERIVE.

The integrations of this paper can be done symbolically. We illustrate this for the symbolic package DERIVE, [5], omitting details such as the commands (e.g. Simplify, Approximate) and settings (e.g. CaseMode:=Sensitive, InputMode:=Word) that are used to obtain these results. For convenience we define

$$EVAL(f, x, x_0) := LIM(f, x, x_0)$$

evaluating a function f(x) at $x = x_0$.

(a) The Radon transform $(\mathbf{R}f)(\boldsymbol{\xi},y)$ of (22) is computed for n=2 by,

$$\mathtt{RADON_2}(f, x_1, x_2, a, b, y) := \int\limits_{-\infty}^{\infty} \, \mathtt{EVAL}\left(f, \, [x_1, x_2], \, \left[x_1, \frac{y}{b} - \frac{a}{b} \, x_1\right]\right) \, dx_1 \, \frac{\sqrt{a^2 + b^2}}{|b|} \tag{A.1}$$

where $\boldsymbol{\xi} = (a, b)$, and $b \neq 0$ is assumed.

The 3-dimensional Radon transform $(\mathbf{R}f)(\boldsymbol{\xi},y)$ is computed by,

RADON_3($f, x_1, x_2, x_3, a, b, c, y$) :=

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \text{EVAL}\left(f, \left[x_1, x_2, x_3\right], \left[x_1, x_2, \frac{y}{c} - \frac{a}{c} x_1 - \frac{b}{c} x_2\right]\right) dx_1 dx_2 \frac{\sqrt{a^2 + b^2 + c^2}}{|c|} \tag{A.2}$$

where $\boldsymbol{\xi} = (a, b, c)$, and $c \neq 0$.

(b) The density of a linear function $\sum \xi_i \mathbf{X}_i$ is, by (25),

DENSITY_2(
$$f, x_1, x_2, a, b, y$$
) := $\frac{\text{RADON}_2(f, x_1, x_2, a, b, y)}{\sqrt{a^2 + b^2}}$ (A.3a)

$$\mathtt{DENSITY_3}(f, x_1, x_2, x_3, a, b, c, y) := \frac{\mathtt{RADON_3}(f, x_1, x_2, x_3, a, b, c, y)}{\sqrt{a^2 + b^2 + c^2}} \tag{A.3b}$$

for n = 2 and n = 3, respectively.

(c) The density in Example 1 is computed by

DENSITY_2
$$\left(\frac{\text{EXP}\left[-\left(x_1^2 - 2\rho x_1 x_2 + x_2^2 \right) / (2(1-\rho^2)) \right]}{2\pi \sqrt{1-\rho^2}}, \, x_1, x_2, \, a, b, \, y \right)$$
 (A.4)

Declaring $\rho \in [-1, 1]$, (A.4) simplifies to

$$\frac{\sqrt{2} \exp \left[-\frac{y^2}{2 \left(a^2 + 2 \, a \, b \, \rho + b^2 \right)} \right]}{2 \, \sqrt{\pi} \, \sqrt{a^2 + 2 \, a \, b \, \rho + b^2}} \tag{A.5}$$

proving (27).

(d) If $(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3)$ are independent and $\sim N(0, 1)$ then the density of $a \mathbf{X}_1 + b \mathbf{X}_2 + c \mathbf{X}_3$ is computed by

$$\text{DENSITY_3} \, \left((2 \, \pi)^{-3/2} \, \text{EXP} \left[-\frac{x_1^2 + x_2^2 + x_3^2}{2} \right], x_1, x_2, x_3, a, b, c, y \right)$$

giving

$$\frac{\sqrt{2}\operatorname{EXP}\left[-\frac{y^2}{2\left(a^2+b^2+c^2\right)}\right]}{2\sqrt{\pi}\sqrt{a^2+b^2+c^2}}$$

showing that $a \mathbf{X}_1 + b \mathbf{X}_2 + c \mathbf{X}_3 \sim N(0, \sqrt{a^2 + b^2 + c^2})$.

(e) In Example 2, the density of $a \mathbf{X}_1 + b \mathbf{X}_2$ is computed by

DENSITY_2
$$CHI(0, x_1, 1)CHI(0, x_2, 1), x_1, x_2, a, b, y)$$
 (A.6)

which gives

$$\frac{|y-a-b|}{2ab} - \frac{|y-a| + |y-b| - |y|}{2ab} \tag{A.7}$$

a rearrangement of (28). Similarly, if $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$ are independent and $\sim U([0,1])$, the density of $a \mathbf{X}_1 + b \mathbf{X}_2 + c \mathbf{X}_3$ is computed by,

DENSITY_3 CHI(0,
$$x_1$$
, 1)CHI(0, x_2 , 1)CHI(0, x_3 , 1), x_1 , x_2 , x_3 , a , b , c , y)

giving

$$-\frac{\left(y-a-b-c\right)\left|y-a-b-c\right|}{4abc}+\frac{\left(y-a-b\right)\left|y-a-b\right|}{4abc}+\frac{\left(y-a-c\right)\left|y-a-c\right|}{4abc}\\-\frac{\left(y-a\right)\left|y-a\right|-\left(y-b-c\right)\left|y-b-c\right|+\left(y-b\right)\left|y-b\right|+\left(y-c\right)\left|y-c\right|-y\left|y\right|}{4abc}$$

APPENDIX B: THE GAMMA AND BETA FUNCTIONS

The gamma function $\Gamma(p)$ is

$$\Gamma(p) := \int_0^\infty x^{p-1} e^{-x} dx$$
 (B.1)

Its properties include:

$$\Gamma(1) = 1 \tag{B.2a}$$

$$\Gamma(p+1) = p \Gamma(p) \tag{B.2b}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{B.2c}$$

The **beta function** is

$$B(p,q) := \int_0^1 (1-x)^{p-1} x^{q-1} dx.$$
 (B.3)

It satisfies:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
 (B.4a)

$$\frac{B(p,q+1)}{B(p,q)} = \frac{q}{p+q} \tag{B.4b}$$

$$\frac{B(p+1,q)}{B(p,q)} = \frac{p}{p+q} \tag{B.4c}$$

where (B.4b)–(B.4c) follow from (B.4a) and (B.2b). A random variable **X** has the **beta**(p,q) distribution, denoted **X** $\sim \beta(p,q)$, if its density is

$$\beta(x|p,q) := \frac{(1-x)^{p-1} x^{q-1}}{B(p,q)} , \quad 0 \le x \le 1 ,$$
(B.5)

in which case we verify, by repeat applications of (B.4b)–(B.4c),

$$E\{X\} = \frac{q}{p+q}, \quad Var\{X\} = \frac{pq}{(p+q)^2(p+q+1)}.$$
 (B.6)

Note that $\beta(p,q) \neq \beta(q,p)$ if $p \neq q$, while $\beta(p,q) = \beta(q,p)$ for all p,q.

Appendix C: Spheres and balls in \mathbb{R}^n

Integrals on S_n , in particular the area a_n , can be computed using **spherical coordinates**, e.g. [9, § VII.2], or the **surface element** of S_n , e.g. [8]. An alternative, simpler, approach is to use (4), representing the "upper hemisphere" as $\phi(\mathcal{B}_{n-1})$, where $\phi = (\phi_1, \phi_2, \dots, \phi_n)$ is

$$\phi_i(x_1, x_2, \cdots, x_{n-1}) = x_i , i \in \overline{1, n-1} ,$$

$$\phi_n(x_1, x_2, \cdots, x_{n-1}) = \sqrt{1 - \sum_{i=1}^{n-1} x_i^2} .$$

The Jacobi matrix is

$$J_{\phi} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -\frac{x_1}{x_n} & -\frac{x_2}{x_n} & \cdots & -\frac{x_{n-1}}{x_n} \end{pmatrix}$$

and its volume is easily computed

$$\operatorname{vol} J_{\phi} = \sqrt{1 + \sum_{i=1}^{n-1} \left(\frac{x_i}{x_n}\right)^2} = \frac{1}{|x_n|} = \frac{1}{\sqrt{1 - \sum_{i=1}^{n-1} x_i^2}}.$$
 (C.1)

Example 7 (Area of S_n). The area a_n is twice the area of the "upper hemisphere". Therefore, by (C.1),

$$a_{n} = 2 \int_{\mathcal{B}_{n-1}} \frac{dx_{1}dx_{2} \cdots dx_{n-1}}{\sqrt{1 - \sum_{i=1}^{n-1} x_{i}^{2}}},$$

$$= 2 \int_{0}^{1} \frac{dv_{n-1}(r)}{\sqrt{1 - r^{2}}}, \text{ using spherical shells of radius } r \text{ and volume } dv_{n-1}(r),$$

$$= 2 a_{n-1} \int_{0}^{1} \frac{r^{n-2}}{\sqrt{1 - r^{2}}} dr, \text{ by (30)}.$$

$$\therefore \frac{a_{n}}{a_{n-1}} = \int_{0}^{1} (1 - x)^{-1/2} x^{(n-3)/2} dx, \text{ using } x = r^{2},$$

$$= B\left(\frac{n-1}{2}, \frac{1}{2}\right) = \frac{\Gamma(\frac{n-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{n}{2})}$$
(C.2)

and a_n can be computed recursively, beginning with $a_2 = 2\pi$, giving (31).

Example 8 (Volume of \mathcal{B}_n). The volume of the unit ball \mathcal{B}_n can be computed by (30) and (31),

$$v_n = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2} + 1\right)}, \quad n = 1, 2, \cdots$$
 (C.4)

Alternatively, the volume v_n can be computed as the limit of the sum of volumes of cylinders, with base $dx_1 \cdots dx_{n-1}$ and height $2\sqrt{1-\sum_{k=1}^{n-1}x_k^2}$,

$$v_n = 2 \int_{\mathcal{B}_{n-1}} \sqrt{1 - \sum_{k=1}^{n-1} x_k^2} dx_1 \cdots dx_{n-1}$$
 (C.5)

a routine integration, similar to Example 7.

RUTCOR-Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd, Piscataway, NJ 08854-8003, USA

 $E ext{-}mail\ address: bisrael@rutcor.rutgers.edu}$