On Principal Angles between Subspaces in \mathbb{R}^n *

Jianming Miao and Adi Ben-Israel †

November 23, 1990
Revised May 15, 1991

Abstract
Let L, M be subspaces in \mathbb{R}^n, dim $L = l \leq$ dim $M = m$. Then the principal angles between L and M,

$$0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_l \leq \frac{\pi}{2}$$

are given by,

$$\cos \theta_i = \frac{\langle x_i, y_i \rangle}{\|x_i\| \|y_i\|} = \max \left\{ \frac{\langle x, y \rangle}{\|x\| \|y\|} : x \in L, \quad y \in M, \quad x \perp x_k, \quad y \perp y_k, \quad k = 1, \ldots, i - 1 \right\}$$

where

$$(x_i, y_i) \in L \times M, \quad i = 1, \ldots, l,$$

are the corresponding pairs of principal vectors. We also define

$$\sin \{L, M\} := \prod_{i=1}^l \sin \theta_i, \quad \cos \{L, M\} := \prod_{i=1}^l \cos \theta_i.$$

We study relations between the principal angles and the volume of a matrix $A \in \mathbb{R}^{m \times n}$ defined by,

$$\text{vol} A := \sqrt{\sum \det^2 A_{IJ}}, \quad \text{see} \ [2],$$

summing over all $r \times r$ submatrices A_{IJ} of A. Sample results are the following generalizations of the Hadamard and Cauchy-Schwarz inequalities.

Theorem 4. Let $A = (A_1, A_2), \ A_1 \in \mathbb{R}^{n_1 \times n_1}, \ A_2 \in \mathbb{R}^{n_2 \times n_2}, \ \text{rank} \ A = l + m$. Then

$$\text{vol} A = \text{vol} A_1 \text{vol} A_2 \sin \{R(A_1), R(A_2)\}.$$

Theorem 5. Let $B, C \in \mathbb{R}^{n \times r}$. Then

$$|\det (B^T C)| = \text{vol} B \text{vol} C \cos \{R(B), R(C)\}.$$

Key words: Principal angles. Singular values. Volume. Compound matrix.

*Supported by DIMACS Grant NSF-STC88-09646 and National Science Foundation Grant DDM-899612.
†RUTCOR-Rutgers Center for Operations Research, Rutgers University, P.O. Box 5062
New Brunswick, NJ 08903-5062, U.S.A.
1 Introduction

Let L, M be subspaces in \mathbb{R}^n, and $\dim L = l \leq \dim M = m$. Then the principal angles between L and M,

$$0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_l \leq \frac{\pi}{2}$$

(1.1)

are defined by

$$\cos \theta_i := \frac{\langle x_i, y_i \rangle}{\|x_i\| \|y_i\|} = \max \left\{ \frac{\langle x, y \rangle}{\|x\| \|y\|} : x \in L, y \in M, x \perp x_k, y \perp y_k, \right\},$$

(1.2)

where

$$(x_i, y_i) \in L \times M, \ i = 1, \ldots, l,$$

(1.3)

are the corresponding l pairs of principal vectors. Note that

$$\theta_1 = \cdots = \theta_k = 0 \iff \dim L \cap M = k,$$

(1.4)

and that if $\dim L = \dim M = 1$, θ_1 is the (nonobtuse) angle between the lines L and M.

We also denote the product of principal sines, and the product of principal cosines, by

$$\sin \{L, M\} := \sin \theta_1 \cdots \sin \theta_l,$$

(1.5)

$$\cos \{L, M\} := \cos \theta_1 \cdots \cos \theta_l,$$

(1.6)

Note that (1.5) and (1.6) are just notation, and not ordinary trigonometrical functions. In particular, $\sin^2 \{L, M\} + \cos^2 \{L, M\} \leq 1$.

Principal angles were introduced by Afriat in his study [1] of the geometry of subspaces in \mathbb{R}^n in terms of their orthogonal and oblique projectors. An important application of principal angles in Statistics is the canonical correlation theory of Hotelling [11], see also [5].

Principal angles and vectors generalize least squares solutions in the following sense: If $\dim L = 1$, say L is the line spanned by the vector a, then the principal angle and vector between L and M are found by minimizing $\|a - y\|_2 : y \in M$.

Björck and Golub [3] used the singular value decomposition to compute the principal angles as follows:

Lemma 1 Let the columns of $Q_L \in \mathbb{R}^{n \times l}$ and $Q_M \in \mathbb{R}^{n \times m}$ be orthonormal bases for L and M respectively, and let

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l \geq 0$$

(1.7)

be the singular values of $Q_M^T Q_L$, then

$$\cos \theta_i = \sigma_i, \ i = 1, \ldots, l,$$

(1.8)

and

$$\sigma_1 = \cdots = \sigma_k = 1 > \sigma_{k+1} \iff \dim L \cap M = k.$$ \hfill (1.9)

In this paper, we discuss some relations between principal angles and the matrix volume defined in [2]. In §3, we express the principal cosines and principal sines in terms of the volume function. Principal angles allow us to “equalize” the Hadamard and Cauchy-Schwarz inequalities in §4.

2 Preliminary results

Let $\mathbb{R}^{m \times n}_r$ be the set of $m \times n$ matrices of rank r. The k-dimensional volume of $A \in \mathbb{R}^{m \times n}_r$, $0 < k \leq r$, is defined as

$$\text{vol}_k A := \prod_{i=1}^k \sigma_i,$$

(2.1)

where

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

(2.2)

are the nonzero singular values of A. In particular, the r-dimensional volume of $A \in \mathbb{R}^{m \times n}_r$ is called its volume, and denoted by $\text{vol} A$, [2].

$$\text{vol} A := \begin{cases} 0 & \text{if } r = 0, \\ \prod_{i=1}^r \sigma_i & \text{if } r > 0, \end{cases}$$

(2.3)

or equivalently

$$\text{vol} A = \sqrt{\sum_{i=1}^r \det^2 A_{i,i}},$$

(2.4)

summing over all $r \times r$ submatrices $A_{i,i}$ of A. For consistency, set

$$\text{vol}_0 A := \min \{1, \text{rank} A\}. \quad (2.5)$$

In particular, if A has full column rank, then

$$\text{vol} A = \sqrt{\det(A^T A)}, \quad (2.6)$$

the volume of the parallelepiped spanned by the columns of A.

The volume function is closely related to compound matrices. The kth compound matrix of A, $C_k(A)$, is the $(m \times k) \times (n \times k)$ matrix whose elements are determinants of all $k \times k$ submatrices of A in lexicographical order. The singular values of $C_k(A)$ are all products $\sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_k}$ of singular values of A. Therefore the largest singular value of $C_k(A)$ (its spectral norm) is $\text{vol}_k A$. Some well known properties of compound matrices are collected below, (see e.g. [8]).

Proposition 1

(a) If $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, rank $AB = r$, then $C_k(AB) = C_k(A)C_k(B)$, $k \leq \min\{m, n\}$.

(b) $C_k(A^T) = C_k(A)^T$.

(c) $C_k(I) = I$, (appropriate size identity matrix).

(d) If A has orthonormal columns, so does $C_k(A)$.

(e) $\text{vol}_k A = \|C_k(A)\|_2$. \hfill \Box
3 Principal angles and volume

The following lemma is used in the sequel.

Lemma 2 Let the columns of $Q_L \in \mathbb{R}^{n \times l}$ and $Q_M \in \mathbb{R}^{n \times m}$ be orthonormal bases for L and M respectively, and denote

$$Q := (Q_M, Q_L).$$

Let the singular values of $Q^T_M Q_L$ be

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l \geq 0.$$ \hfill (3.2)

Then the singular values of Q, in decreasing order, are

$$\sqrt{1 + \sigma_1}, \ldots, \sqrt{1 + \sigma_l}, 1, \ldots, 1, \sqrt{1 - \sigma_l}, \ldots, \sqrt{1 - \sigma_1}. \hfill (3.3)$$

Proof. Since

$$Q^T Q = \left(\begin{array}{c} I \\ Q^T_M Q_L \end{array} \right) \left(\begin{array}{c} I \\ Q^T_M Q_L \end{array} \right)^T = I + \left(\begin{array}{cc} O & Q^T_M Q_L \\ Q^T_M Q_L & O \end{array} \right),$$

the eigenvalues of

$$\left(\begin{array}{cc} O & Q^T_M Q_L \\ Q^T_M Q_L & O \end{array} \right)$$

are (see [9, p. 418])

$$\pm \sigma_1, \pm \sigma_2, \ldots, \pm \sigma_l, 0, \ldots, 0 \hfill \frac{m - l}{m - l}. \hfill \Box$$

Thus the eigenvalues of $Q^T Q$ are

$$1 \pm \sigma_1, \ldots, 1 \pm \sigma_l, 1, \ldots, 1 \hfill \frac{m - l}{m - l}. \hfill \Box$$

Theorem 1 Let the columns of $Q_L \in \mathbb{R}^{n \times l}$ and $Q_M \in \mathbb{R}^{n \times m}$ be orthonormal bases for L and M respectively, and denote

$$Q := (Q_M, Q_L).$$

Let

$$0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_l \leq \frac{\pi}{2}$$

be the principal angles between L and M. Then for $i = 0, 1, \ldots, l - k - 1$,

$$\cos \theta_{l-i} = 1 - \frac{\text{vol}_{m+i+1}(Q)}{\text{vol}_{m+i}(Q)} = \frac{\text{vol}_{l-i}(Q)}{\text{vol}_{l-i-1}(Q)} - 1, \hfill (3.6)$$

$$\sin \theta_{l-i} = \frac{\text{vol}_{m+i+1}(Q)}{\text{vol}_{l-i-1}(Q)} (\sin \theta_{l-i-1} \cdots \sin \theta_l)^{-1}, \hfill (3.7)$$

where

$$k = \dim L \cap M. \hfill (3.8)$$

Proof. By Lemmas 1 and 2,

$$\text{vol}_{m+i+1}(Q) = \text{vol}_{m+i}(Q) \sqrt{1 - \cos \theta_{l-i}}, \ i = 0, 1, \ldots, l - 1,$$

$$\text{vol}_{l-i}(Q) = \text{vol}_{l-i-1}(Q) \sqrt{1 + \cos \theta_{l-i}}, \ i = 0, 1, \ldots, l - 1,$$

$$\text{vol}_{m+i+1}(Q) = \text{vol}_{l-i-1}(Q) \sin \theta_{l-i} \cdots \sin \theta_l, \ i = 0, 1, \ldots, l - 1,$$

which, after some arithmetic calculations, prove (3.6) and (3.7).

The following theorem gives the analogous results in terms of the orthogonal projectors P_L and P_M on L and M respectively.

Theorem 2 Let P_L and P_M be the orthogonal projectors on L and M respectively,

$$P := (P_M, P_L),$$

and let

$$0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_l \leq \frac{\pi}{2}$$

be the principal angles between L and M. Then for $i = 0, 1, \ldots, l - k - 1$,

$$\cos \theta_{l-i} = 1 - \frac{\text{vol}_{m+i+1}(P)}{\text{vol}_{m+i}(P)} = \frac{\text{vol}_{l-i}(P)}{\text{vol}_{l-i-1}(P)} - 1, \hfill (3.11)$$

$$\sin \theta_{l-i} = \frac{\text{vol}_{m+i+1}(P)}{\text{vol}_{l-i-1}(P)} (\sin \theta_{l-i-1} \cdots \sin \theta_l)^{-1}, \hfill (3.12)$$

where

$$k = \dim L \cap M. \hfill (3.13)$$

Proof. Let Q_L, Q_M be as in Lemma 2. Then

$$P_L = Q_L Q_L^T, \quad P_M = Q_M Q_M^T.$$

Therefore

$$P = (Q_M, Q_L) \left(\begin{array}{cc} Q_M^T & O \\ O & Q_L^T \end{array} \right) = QU^T,$$

where

$$Q = (Q_M, Q_L),$$

and

$$U = \left(\begin{array}{cc} Q_M & O \\ O & Q_L \end{array} \right).$$

Thus U has orthonormal columns, and

$$\text{vol}_i(P) = \|C_i(Q)\|_2, \ \text{by \ Proposition \ 1} \hfill (3.14)$$

$$= \text{vol}_i(Q), \quad i = 0, 1, \ldots, m + l. \hfill (3.14)$$

The result follows from Theorem 1. \hfill \Box

In applications to linear equations the subspaces are the null spaces of the coefficient matrices. Let

$$A_i x = b_i, \ i = 1, 2,$$
be two linear systems, with nonempty solution sets

\[S_i = \{ x : A_i x = b_i \}, \quad i = 1, 2. \]

(3.15)

Then the principal angles between \(S_1 \) and \(S_2 \) are the principal angles between \(L = N(A_1) \) and \(M = N(A_2) \). The respective projectors are

\[P_L = I - A_1^\dagger A_1, \quad P_M = I - A_2^\dagger A_2. \]

(3.16)

The following theorem suggests that instead of using \(P_L \) and \(P_M \), we can use

\[P_{L_i} = A_i^\dagger A_1, \quad P_{M_i} = A_i^\dagger A_2, \]

(3.17)

to compute the principal angles between \(L, M \).

Theorem 3 The non-zero principal angles between \(L, M \) equal to the non-zero principal angles between \(L_i, M_i \).

Proof. Let \((x_i, y_i) \) be a pair of principal vectors corresponding to the \(i \)th non-zero principal angle \(\theta_i \) between \(L \) and \(M \). Then \(P_L y_i = \alpha x_i \), for some scalar \(\alpha \). Let the two vectors \(x_i^\perp \) and \(y_i^\perp \) be obtained from \(x_i \) and \(y_i \), respectively, by a \(\pi/2 \)-rotation in \(\{x_i, y_i\} \)-plane. Then \(x_i^\perp \in L^\perp, y_i^\perp \in M^\perp \), and the angle between \(x_i^\perp \) and \(y_i^\perp \) is also \(\theta_i \). Therefore the \(i \)th non-zero principal angle between \(L_i, M_i \) is \(\leq \theta_i \). The result follows by interchanging \(L, M \) with \(L_i, M_i \). \(\square \)

4 Hadamard and Cauchy-Schwarz equalities

Let \(a_1, \ldots, a_m \) be a basis for \(M \), and let \(L \) be 1-dimensional, say \(L = \text{span}\{a\} \), where \(a = a_M + a_{M^\perp} \), \(a_M \in M \) and \(a_{M^\perp} \in M^\perp \). Then ([8])

\[\|a_{M^\perp}\|_2 = \frac{\|a_{M^\perp}\|}{\|a\|_2} \sin \theta. \]

(4.1)

That is

\[\|a_{M^\perp}\|_2 = \frac{\|a_{M^\perp}\|}{\|a\|_2} \sin \theta, \]

(4.2)

where \(\theta \) is the principal angle between \(a, M \). For the general case, Afriat [1] gave the following “equalized” Hadamard inequality.

Lemma 3 Let \(A = (A_1, A_2), A_1 \in \mathbb{R}^{n \times l}, A_2 \in \mathbb{R}^{m \times m} \). Then

\[\|A_{l+m} A\|_2 = \|A_2\|_2 \sin \{R(A_1), R(A_2)\}, \]

(4.3)

where \(\sin \{R(A_1), R(A_2)\} \) is the product of principal sines between \(R(A_1) \) and \(R(A_2) \), see (1.5). \(\square \)

In Lemma 3 the matrices \(A_1, A_2 \) are of full column-rank.

A further generalization of the Hadamard inequality is:

Theorem 4 Let \(A = (A_1, A_2), A_1 \in \mathbb{R}_i^{n \times n_1}, A_2 \in \mathbb{R}_m^{n \times n_2} \), rank \(A = l + m \). Then

\[\det A = \det A_1 \det A_2 \sin \{R(A_1), R(A_2)\}. \]

(4.4)

Proof.

\[\det^2 A = \sum_{j} \det^2 A_{m,j}, \]

where the summation is over all \(n \times (l + m) \) submatrices of rank \(l + m \). Since every \(n \times (l + m) \) submatrix of rank \(l + m \) has \(l \) columns \(A_{s,j} \) from \(A_1 \) and \(m \) columns \(A_{s,j} \) from \(A_2 \), then

\[\det^2 A = \sum_{j} \sum_{j_2} \det^2 A_{s,j_1} \det^2 A_{s,j_2} \sin^2 \{R(A_1), R(A_2)\}, \]

by Lemma 3,

\[= \det A_1 \det A_2 \sin^2 \{R(A_1), R(A_2)\}. \]

\(\square \)

For a square matrix \(A \), the above results imply:

Corollary 1 Let \(A = (A_1, A_2) \) be a square matrix, and \(A_1 \in \mathbb{R}^{n \times n}, A_2 \in \mathbb{R}^{m \times m} \). Then

\[\det A = \det A_1 \det A_2 \sin \{R(A_1), R(A_2)\}. \]

(4.5)

Now we “equalize” the Cauchy-Schwarz inequality.

Theorem 5 Let \(B, C \in \mathbb{R}_r^{n \times r} \). Then

\[\det(B^T C) = \det B \det C \cos \{R(B), R(C)\}, \]

(4.6)

where \(\cos \{R(B), R(C)\} \) is the product of principal cosines between \(R(B) \) and \(R(C) \), see (1.6).

Proof. Let \(Q_B \) and \(Q_C \) be orthonormal bases for \(R(B) \) and \(R(C) \), respectively, so that,

\[B = Q_B R_B, \quad C = Q_C R_C, \]

for some matrices \(R_B, R_C \in \mathbb{R}_r^{r \times r} \). Then

\[\det(B^T C) = \det(Q_B^T) \det(R_B) \det(Q_C^T) \det(Q_B^T Q_C), \]

\[= \det(B) \det(C) \cos \{R(B), R(C)\}, \]

by Lemma 1.

This completes the proof. \(\square \)

Denote the set of strictly increasing sequences of \(k \) elements from \(1, \ldots, n \), by

\[Q_{k,n} = \{ i = (i_1, \ldots, i_k) : 1 \leq i_1 < \cdots < i_k \leq n \}. \]

For any sets \(I \subset \{1, 2, \ldots, m\} \), \(J \subset \{1, 2, \ldots, n\} \), let \(A_I, A_{s,J}, A_{J,J} \) denote the submatrices of \(A \) lying in rows
indexed by I, in columns indexed by J, and in their intersection, respectively. For $A \in \mathbb{R}^{m \times n}$, let
\[
I(A) := \{ I \in Q_{r,m} : \text{rank } A_{I*} = r \}, \\
J(A) := \{ J \in Q_{r,n} : \text{rank } A_{*J} = r \}.
\]

For $I \subset \{1,2, \ldots, m\}$ define the subspace \mathbb{R}^m_I by
\[
\mathbb{R}^m_I := \{ x = (x_1, \ldots, x_m) \in \mathbb{R}^m : x_i = 0 \text{ if } i \not\in I \}.
\]

An interesting interpretation of the determinants of maximal nonsingular submatrices is the following

Corollary 2 Let $A \in \mathbb{R}^{m \times n}, \ I \in Q_{r,m}$. Then
\[
\cos\{R(A), \mathbb{R}^m_I\} = \frac{|\det A_{IJ}|}{\text{vol } A_{*J}} \tag{4.7}
\]
for any $J \in J(A)$.

Proof. Let $I = \{i_1,i_2, \ldots, i_r\}, \ B = (e_{i_1}, \ldots, e_{i_r})$, and for any $J \in J(A)$ let $C = A_{*J}$. Then
\[
R(B) = \mathbb{R}^m_I, \ R(C) = R(A), \ \text{and } B^T C = A_{IJ}.
\]
By Theorem 5
\[
\cos\{R(A), \mathbb{R}^m_I\} = \cos\{R(B), R(C)\} = \frac{|\det A_{IJ}|}{\text{vol } A_{*J}}.
\]

Note that for any $I \in Q_{r,m}$, the ratio $|\det A_{IJ}|/\text{vol } A_{*J}$ is independent of the choice of $J \in J(A)$.

Example 1 Let
\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \tag{4.8}
\]
$I = \{1, 2\}, \ J = \{1, 2\}$. Then A is of rank 2, and
\[
|\det A_{IJ}| = 3, \ \text{vol } A_{*J} = \sqrt{3^2 + 6^2 + 3^2} = 3\sqrt{6},
\]
and, by (4.7),
\[
\cos\{R(A), \mathbb{R}^3_{\{1,2\}}\} = \frac{1}{\sqrt{6}}.
\]

Corollary 3 Let $L \subset \mathbb{R}^m$ be a subspace of dimension r. Then
\[
\sum_{I \in Q_{r,m}} \cos^2\{L, \mathbb{R}_I^m\} = 1. \tag{4.9}
\]

Proof. Follows from (4.7) since
\[
\text{vol}^2 A_{*J} = \sum_{I \in I(A)} \det^2 A_{IJ}. \tag{4.10}
\]

The corresponding result for the complementary orthogonal subspace L^\perp is
\[
\sum_{I \in Q_{r,m}} \cos^2\{L^\perp, \mathbb{R}_I^m\} = 1, \tag{4.11}
\]
where I^c is the complement of I in $\{1,2, \ldots, m\}$. The equivalence of (4.9) and (4.10) is by
\[
\cos\{L, \mathbb{R}^m_I\} = \cos\{L^\perp, \mathbb{R}^m_{I^c}\}, \tag{4.12}
\]
see Theorem 3.

Example 2 Let $L = R(A)$ for A of (4.8). Then $L^\perp = N(A^T)$ is the line spanned by $(1,-2,1)$. The complement of $I = \{1,2\}$ is $I^c = \{3\}$, and $\mathbb{R}^m_{I^c}$ is the x_3-axis. The angle between the lines L^\perp and $\mathbb{R}^m_{I^c}$, $\angle(L^\perp, \mathbb{R}^m_{I^c})$, is given by
\[
\cos\angle(L^\perp, \mathbb{R}^m_{I^c}) = \cos \angle((1,-2,1),(0,0,1)) = \frac{1}{\sqrt{1^2 + 2^2 + 1^2}} = \frac{1}{\sqrt{6}},
\]
in agreement with (4.11) and Example 1.

Theorem 6 Let $B \in \mathbb{R}^{n \times r}, \ C \in \mathbb{R}^{n \times s}$ and rank $(C) \geq r$. Then
\[
\cos\{R(B), R(C)\} = \cos \angle(C_r(B), C_r(C)), \tag{4.13}
\]
where $\angle(C_r(B), C_r(C))$ is the angle between the vector $C_r(B)$ and the subspace $R(C_r(C))$.

Proof. Let the columns of
\[
E = (e_1, \ldots, e_r) \ \text{and } F = (f_1, \ldots, f_t)
\]
be orthonormal bases for $R(B)$ and $R(C)$ respectively, and let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0$ be the singular values of $F^T E$. Then by Lemma 1
\[
\cos\{R(B), R(C)\} = \sigma_1 \cdots \sigma_r.
\]

On the other hand, the columns of $C_r(E)$ and $C_r(F)$ form orthonormal bases for $C_r(B)$ and $R(C_r(C))$ respectively. Moreover, the singular value of $C_r(F)^T C_r(E)$ ($= C_r(F^T E)$) is
\[
\sigma_1 \cdots \sigma_r.
\]

By the same lemma,
\[
\cos \angle(C_r(B), C_r(C)) = \sigma_1 \cdots \sigma_r.
\]

We now use the above results (the equalized Hadamard and Cauchy-Schwarz inequalities) to equalize a determinantal inequality of Thompson.
Theorem 7 \footnote{We proved this originally for $k = 2$, and we thank the referee for suggesting extension to $k > 2$.} Let $A \in \mathbb{R}^{kr \times kr}$ be partitioned as
\[A = (B_1, B_2, \cdots, B_k), \quad \text{where} \quad B_i \in \mathbb{R}^{kr \times kr}. \]
Then
\[
\det \begin{pmatrix}
B_1^T B_1 & \cdots & B_1^T B_k \\
\vdots & \ddots & \vdots \\
B_k^T B_1 & \cdots & B_k^T B_k
\end{pmatrix} = \det \begin{pmatrix}
\det(B_1^T B_1) & \cdots & \det(B_1^T B_k) \\
\vdots & \ddots & \vdots \\
\det(B_k^T B_1) & \cdots & \det(B_k^T B_k)
\end{pmatrix} \times \prod_{i=1}^{k-1} \sin^2 \{R(B_i), R(B_{i+1}, \cdots, B_k)\} \left(1 - \cos^2 \theta_i \right)^{-1} \leq 1.
\]
(4.13)

Proof. We prove the case $k = 2$.
\[
\det \begin{pmatrix}
B_1^T B_1 & B_1^T B_2 \\
B_2^T B_1 & B_2^T B_2
\end{pmatrix} = \det A^T A = \det \tilde{A} = \cos \angle(C_r(B_1), C_r(B_2)) \cdot \prod_{i=1}^{k-1} \sin^2 \{R(B_i), R(B_{i+1}, \cdots, B_k)\} \left(1 - \cos^2 \theta_i \right)^{-1} \leq 1.
\]
(4.14)

The last equality follows from Theorem 6. If $\theta_1, \cdots, \theta_k$ are the principal angles between two subspaces L and M, then we always have
\[
\sin^2 \{L, M\} \leq \frac{\prod_{i=1}^{k} \left(1 - \cos^2 \theta_i \right)}{1 - \prod_{i=1}^{k} \cos^2 \theta_i} \leq 1.
\]
(4.15)

Thus from (4.14) and (4.15), we have
\[
\prod_{i=1}^{k-1} \sin^2 \{R(B_i), R(B_{i+1}, \cdots, B_k)\} \leq \prod_{i=1}^{k-1} \sin^2 \{R(B_i), R(B_{i+1}, \cdots, B_k)\} \leq 1.
\]
(4.16)

Therefore Theorem 7 implies the following inequalities of Davis [6], Everitt [7] ($k = 2$) and Thompson [13] ($k \geq 2$).

Corollary 4 Let a p.s.d. matrix A of order kr be partitioned as
\[A = \begin{pmatrix} A_{11} & \cdots & A_{1k} \\ \vdots & \ddots & \vdots \\ A_{k1} & \cdots & A_{kk} \end{pmatrix}, \quad \text{where} \quad A_{ij} \in \mathbb{R}^{r \times r}. \]
(4.17)

Then
\[
\det \begin{pmatrix} A_{11} & \cdots & A_{1k} \\ \vdots & \ddots & \vdots \\ A_{k1} & \cdots & A_{kk} \end{pmatrix} \leq \det \begin{pmatrix} \det A_{11} & \cdots & \det A_{1k} \\ \vdots & \ddots & \vdots \\ \det A_{k1} & \cdots & \det A_{kk} \end{pmatrix} \cdot \prod_{i=1}^{k-1} \sin^2 \{R(B_i), R(B_{i+1}, \cdots, B_k)\} \left(1 - \cos^2 \theta_i \right)^{-1} \leq 1.
\]
(4.18)

A matrix $A \in \mathbb{R}^{n \times n}_{+}$ is called range-Hermitian (or EP matrix, EP_r matrix) if
\[R(A^T) = R(A). \]
(4.19)

Note that the class of range-Hermitian matrices includes normal matrices and nonsingular matrices. A good reference on range-Hermitian matrices is [12].

A characterization of range-Hermitian matrices follows.

Theorem 8 Let $A \in \mathbb{R}_r^{n \times n}$. Then A is range-Hermitian if and only if A has r nonzero eigenvalues $\lambda_1, \cdots, \lambda_r$, and vol $A = \prod_{i=1}^{r} |\lambda_i|$. Proof. Let $A = CB^T$ be a full-rank factorization of A. Since
\[R(A) = R(C), \quad R(A^T) = R(C), \quad R(A) = R(A) \quad \text{if and only if} \quad \text{vol} \{R(B), R(C)\} = 1.
\]
By Theorem 6
\[\cos \angle(C_r(B), C_r(C)) = \frac{|C_r(B)^T C_r(C)|}{\|C_r(B)\|_2 \|C_r(C)\|_2} = \]
5
\[= \cos\{R(B), \ R(C)\} = 1. \]

And using the fact, \[2\],

\[\text{vol} \ A = \text{vol} \ B \ \text{vol} \ C. \]

Then

\[\frac{\left| \sum \det A_{ij} \right|}{\text{vol} \ A} = 1, \]

where the summation is over all \(r \times r \) principal submatrices of \(A \). And finally note that the \(r \)th elementary symmetric function of the eigenvalues of \(A \) is the sum of all the \(r \times r \) principal minors of \(A \).

Example 3 The matrix \(A \) of (4.8) is range-Hermitian. Its nonzero eigenvalues are

\[\lambda_1 = 15 + \frac{3\sqrt{33}}{2}, \quad \lambda_2 = 15 - \frac{3\sqrt{33}}{2}, \]

and its nonzero singular values are, correct to 6 decimals,

\[\sigma_1 = 16.848103, \quad \sigma_2 = 1.068369. \]

Therefore \(\text{vol} \ A = \sigma_1 \sigma_2 = |\lambda_1| |\lambda_2| = 18. \)

To put Theorem 8 in perspective recall that for any square matrix \(A \in \mathbb{R}^{n \times n} \) with singular values \(\sigma_1 \geq \cdots \geq \sigma_n \geq 0 \), and eigenvalues \(|\lambda_1| \geq \cdots \geq |\lambda_n| \),

\[\prod_{i=1}^{k} |\lambda_i| \leq \prod_{i=1}^{k} \sigma_i, \quad k = 1, \ldots, n, \tag{4.20} \]

with equality for \(k = n \), [10, Theorem 3.3.2]. For \(k = n \) the common value in (4.20) is nonzero iff \(A \) is nonsingular, in which case it is range-Hermitian. Therefore, the equality in (4.20) for \(k = r = n \) is a special case of Theorem 8 which states that, for range-Hermitian matrices of rank \(r \),

\[\prod_{i=1}^{r} |\lambda_i| = \prod_{i=1}^{r} \sigma_i. \tag{4.21} \]

Conversely, Theorem 8 follows from the nonsingular case, since a matrix \(A \) is range-Hermitian iff

\[A = U \begin{pmatrix} B & O \\ O & O \end{pmatrix} U^T, \quad U \text{ orthogonal}, \ B \text{ nonsingular}, \]

see [4, Theorem 4.3.1]. Written analogously to (4.20), a characterization of normal matrices is, [10, Problem 3.3.14]

\[\prod_{i=1}^{k} |\lambda_i| = \prod_{i=1}^{k} \sigma_i, \quad k = 1, \ldots, n. \tag{4.22} \]

References

