Lecture 7: The Drazin Inverse
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Extension to matrices with index &

For a matrix A € C**" with index 1, the group inverse A* is the

unique solution of the system
AXA=A,
XAX =X,
AX = XA,

also called the {1,2,5}—inverse of A.




Extension to matrices with index &

For a matrix A € C**" with index 1, the group inverse A* is the
unique solution of the system

AXA=A,
XAX = X |
AX = XA,
also called the {1,2,5}—inverse of A.

For matrices with index k, the appropriate system is

AFX A = AF
XAX = X,
AX = XA,

and its unique solution is the Drazin inverse, or
{1%.2, 5}—inverse, of A, denoted AP.




Motivation

If Ac C*™"  Ind A=k, then C" = R(A*) ® N(A*), and the
restriction A|z axy € L(R(A"), R(A")) is invertible.

Let X € C"*™ be defined by

1 . .
o { Alphae u, ifu e R(AY);

0, if ue N(A"Y).
Then X is an {1%,2,5}—inverse of A.

\N (AF)




The Drazin inverse

Lemma. If Y is a {1°,5}-inverse of square matrix A, then
X = Aty*tt!
is a {1¢,2, 5}-inverse.

Theorem (Drazin). Let A € C"*™ have index k. Then A has a
unique {1%,2,5}-inverse, which is expressible as a polynomial in A,
and is also the unique {1, 2, 5}-inverse for every ¢ > k.

Proof. If A has index k, its minimum polynomial is

m(\) = Np()\) , where p(0) # 0.

. m(\) = eX*(1 = Ag(})) , for some polynomial q(-)
s AMTg(A) = A"

showing that g(A) is a {1*,5}-inverse of A. Use lemma to get a
{1%.2,5}-inverse. Proof of uniqueness omitted. []




Jordan form

Theorem. Let A € C**™ have the Jordan form

Ji O
A=XJX1=x1|" X1,
O Jo
where Jy and J; are the parts of J corresponding to zero and

non-zero eigenvalues. Then

Jt o

AP =X X (2)

O O

Proof. Let A be singular of index £ (i.e., the biggest block in the
submatrix Jy is k X k). Then the matrix given by (2) is a
{1%,2,5}~inverse of A.




Properties of the Drazin inverse

(a) If X is nonsingular, then
A=XBX ' = AP =XB°X"".
b) (A")P = (A")"
c) (AP = (AP for £ =1,2,...
d) (AP)P = A if and only if A has index 1.

AAD = ADA = PR(AD),N(AD) = PR(AE),N(AE) for all ¢ Z Ind A.
If Ind A = k then

AP = lim (AFT 4+ o?1)71A | real ,

a—0
and the approximation error is

?| AP+
— 24P

||AD o (Ak—l—l —I—OéQI)_lAkH < -

where || - || is the spectral norm




The Wedderburn decomposition
Theorem (Wedderburn). A square matrix A with index k has

a unique decomposition A=C+ N (1)

such that C' has index 0 or 1, NV is nilpotent of index k, and
NC=CN=0.

Proof. Let A € C"*" be given in Jordan form

Ji O
O Jy

A=XJX 1=X X!

where Jy and J; are the parts of J corresponding to zero and

non-zero eigenvalues. Then

s O __,
C=X X', N=X




The Wedderburn decomposition (cont’d)

Theorem. If A =C + N is a Wedderburn decomposition then
C=A%2AP = (AP)Y* | N = A(Il — APA), AP =CP ¢ C{1,2}.




Spectral property of the Drazin inverse

The definition of S—inverse is weakened in (b) below.

(a) Let A € C™*™. Then X is an S—inverse of A if they share the
property that, for every A € C and every vector X,

X is a A—vector of A x is a N—vector of X

of grade p of grade p

(b) X is an S’—inverse of A if, for all A £ 0, and every vector x,

x is a A—vector of A x is a AT-vector of X

of grade p of grade p
and x is a O—vector of X if and only if it is a O—vector of A (without
regard to grade).

Theorem. For every square matrix A, A and AP are S’-inverses
of each other.




Matrix functions

A matrix function is a mapping f : C"*" — C™*"™ that
corresponds, in some sense, to a scalar function f : C — C. For
f(A) to be defined, the scalar function f is required to be analytic

in some open set containing A(A).




Matrix functions

A matrix function is a mapping f : C"*" — C™*"™ that
corresponds, in some sense, to a scalar function f : C — C. For
f(A) to be defined, the scalar function f is required to be analytic
in some open set containing A(A).

Ex. Inhomogeneous linear differential equation.

Scalar equation: & + ax = b(t)

Solution: z(t) = e %y + e~ ft e**b(s)ds , y arbitrary.

Vector equation: x(t) + Ax(t) = b(t)
Solution: x(t) = e~y + e~ ft e1*b(s)ds , y arbitrary.
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Matrix functions

A matrix function is a mapping f : C"*" — C™*"™ that
corresponds, in some sense, to a scalar function f : C — C. For
f(A) to be defined, the scalar function f is required to be analytic
in some open set containing A(A).

Ex. Inhomogeneous linear differential equation.

Scalar equation: & + ax = b(t)

Solution: z(t) = e %y + e~ ft e**b(s)ds , y arbitrary.

Vector equation: x(t) + Ax(t) = b(t)
Solution: x(t) = e~y + e~ ft e1*b(s)ds , y arbitrary.

The matrix function e~4? plays here the same role as the scalar

a

function e~ %. What is the nature of the correspondence

e—at G_At

10-b



The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappie:




The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappie:

[. If f(2) =k then f(A) = kI
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The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappie:
[. If f(2) =k then f(A) = kI
II. If f(2) = 2z then f(A) = A
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The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappié:
I If f(2) = k then f(A) = kI
I1. If f(z) = 2 then f(4) = A
IIL. If f(2) = g(2) + h(z) then £(A) = g(A) + h(A)
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The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappie:

I. If f(2) =k then f(A) = kI

II. If f(2z) = z then f(A) = A

III. If f(z) = g(z) + h(z) then f(A) = g(A) + h(A)
IV. If f(2) = g(2)h(z) then f(A) = g(A)h(A).
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The Fantappie requirements

To be useful, the correspondence
f(z) «—— £(4)

must satisfy certain formal conditions. The following four

conditions are due to Fantappie:

I. If f(2) =k then f(A) = kI

II. If f(2z) = z then f(A) = A

III. If f(z) = g(z) + h(z) then f(A) = g(A) + h(A)
IV. If f(2) = g(2)h(z) then f(A) = g(A)h(A).

A fifth condition serves to assure consistency of compositions of

matrix functions:

V. If f(z) = h(g(z)) then f(A) = h(g(A)).
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Spectral theorem for diagonable matrices

Theorem. Let A € C™"*™ with s distinct eigenvalues A1, Ao, ..., As.

Then A is diagonable if and only if there exist projectors
El, EQ, ceey ES such that

EE; =i E; |

In :i Ez'a
1=1

1=1

Let L; be the iy}, eigenspace, X = (X; X5 -+ X,) € C"*"™
cols X; = basis for L;, Y; the corresponding submatrix of X ~!, then

the principal idempotents (or Frobenius invariants) of A.




Functions of diagonable matrices

Definition. If A is diagonable, then

f(A) = Z f(\) E;




Functions of diagonable matrices

Definition. If A is diagonable, then

f(A) = Z f(\) E;

This definition satisfies the Fantappie requirements. In

particular, if h «+—— h and g «+— g then

fi=hog+«—f:=hog

defined as
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A polynomial in a square matrix

Let A € C™*™ have s distinct eigenvalues, and Jordan form (J; all
blocks corresponding to the iy}, eigenvalue),

J O --- O
O Jy --- O

O

A=XJX 1= (X1 X5 -+ X,)

Then for any polynomial p()\),

p(A) = (X1 Xz -+ Xs)




A power of a £ x k Jordan block

)\m

0

m)\m—l

)\m

() A2

m)\m—l

0

(

m
k—1

))\m—k+1_




A polynomial in a Jordan block

Let p(\) be a polynomial. Then




Spectral theorem for square matrices

Theorem. Let the matrix A € C"*"™ have s distinct eigenvalues.
Then there exist s unique projectors {Ey : A € A(A)} such that

AEA(A) AEA(A)
AFE, = E)\A, for all X € )\(A) ;

Ex(A= XD =0, forall A€ \(A) , k>v(\).

where v(\) denote the index of (A — A1), called the index of \.




Matrix functions on a Jordan block

Let A € AM(A), and let v(\) denote the index of (A — A1), called the
index of \.

Let J be a v x v Jordan block corresponding to A. The matrix

function f («— a scalar function f) is defined on J as follows

Z f<k) J—AI,,)’f

SOV




Matrix functions

For any A € C™"*™ with spectrum A(A), let F(A) denote the class

of all functions f : C — C which are analytic in some open set
containing A(A). For any scalar function f € F(A), the

corresponding matrix function f(A) is defined by




Matrix functions

For any A € C™"*™ with spectrum A(A), let F(A) denote the class

of all functions f : C — C which are analytic in some open set
containing A(A). For any scalar function f € F(A), the

corresponding matrix function f(A) is defined by

f(A) can be evaluated from the Jordan form of A

A:Xdiag(J17J27'°')X_17

f(A) = X diag (f(J1),f(Jo), - ) Xt
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The Drazin inverse is the reciprocal function

For A € C™"*™ with spectrum A(A), and a scalar function
f € F(A), the corresponding matrix function f(A) is

v(A)—1

f(k)
= Y E\ Z A—Mn)’f

AEA(A)




The Drazin inverse is the reciprocal function

For A € C™"*™ with spectrum A(A), and a scalar function

f € F(A), the corresponding matrix function f(A) is

f(A) =
AEA(A) k=0

The analogous result for the Drazin inverse is:

Theorem. Let A € C**™

v(A)—1

AP =y E,\Z k+1 A-Mn)’f. (2)

0AAEA(A)

This shows that the Drazin inverse is the matrix function
corresponding to the reciprocal f(z) = 1/z, defined on nonzero

eigenvalues.
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The system x' + Ax =f

The general solution of < &+ Ax — f

is x — o~ At ( / eAtf(t)dt)

where 2 tk

If A is nonsingular then

/ eAtdt = A1 et 1+ O

where C' is arbitrary (the constant of integration.)
If A is singular, of index £, then
t2 3 . tk’

/ et dt = AP e+ (I-AAP) [tl + A+ A2§ 4+ AR o

+C




The system x’ + Ax = f (cont’d)

If f is a constant vector then
x 4+ Ax = f

has a particular solution that is a polynomial in ¢. The general

X = e~ At (/ eAtdt>f—|—C

and a particular solution is

solution is

D D t2 2t3 k—1 k—ltk
x = APE 4 (I = AAP) [t — Agy + AP0 — - ()R T AR o f

3! k!

AP =




The system Ax'+ Bo =f, AB = BA

Let A be singular, B commute with A, and consider
Ax' + Bx =f
and the corresponding homogeneous equation

Ax' + Bx =0




The system Ax'+ Bo =f, AB = BA

Let A be singular, B commute with A, and consider
Ax' + Bx =f

and the corresponding homogeneous equation
Ax' +Bx =0

Let A = C 4+ N be the Wedderburn decomposition of A, with
C' of index 0 or 1, N nilpotent of index k, CN = NC = O and

AP =CP | N=A(I-APA), C=A4%4" .
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The system Ax'+ Bo =f, AB = BA

Let A be singular, B commute with A, and consider
Ax' + Bx =f

and the corresponding homogeneous equation
Ax' +Bx =0

Let A = C 4+ N be the Wedderburn decomposition of A, with
C' of index 0 or 1, N nilpotent of index k, CN = NC = O and

AP =CP | N=A(I-APA), C=A4%4" .

If AB = BA then

ABP = BP A, APB=BAP | and APBP = BP AP .
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The system Ax'+ Box =f, AB = BA (cont’d)
Ax'+ Bx =f

Ax' + Bx =0
Theorem. If AB = BA then

y = e_ADBtADAV :

is a solution of (2) for any vector v.

Proof.
Ay’ = —AAPBe=A"Bt AD Ay, = —Be=A"Bt AD Ay = —By .




The system Ax'+ Box =f, AB = BA (cont’d)
Ax'+ Bx =f
Ax'+ Bx =0

Theorem. If AB = BA then

y = e_ADBtADAV :

is a solution of (2) for any vector v.

Proof.
Ay’ = —AAPBe=A"Bt AD Ay, = —Be=A"Bt AD Ay = —By .

Let
x1 = APAx | xo = (I — AP A)x

Then (1) becomes

(C+ N)(x; +x5)+B(xy +x2)="f
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The system Ax'+ Box =f, AB = BA (cont’d)

The story so far

Ax' + Bx =f
Ax'+ Bx =0
x1 = AP Ax | xo = (I — AP A)x
(C+ N)(x] +x3) + B(x1 +x2) =f




The system Ax'+ Box =f, AB = BA (cont’d)

The story so far
Ax' + Bx =f
Ax' + Bx =0
x1 = AP Ax | xo = (I — AP A)x
(C+ N)(x] +x5)+B(x1 +x2) =f

Multiplying (4) by CPC and then by (I — CPC) it follows that (2)
is equivalent to the system

(7)(3 + Zg)(l = f&
.pJ)(é + 135(2 = fé

where f; = CPCf and f;, = (I — CPO)f, etc.
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