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506 PSEUDO-INVERSES IN ASSOCIATIVE RINGS [September

display to them what McShane has called the “two legs” on which mathematics
stands—its “innate beauty and austere elegance” as well as its “usefulness to
scientists and technicians of all kinds.”*

* E. J. McShane, Maintaining communication, this MONTHLY, vol. 64, 1957, pp. 309-317.

PSEUDO-INVERSES IN ASSOCIATIVE RINGS AND SEMIGROUPS
M. P. DRAZIN, Northwestern University

L. Introduction. E. H. Moore ([5], and ¢f. also Penrose [6], Rado [8]) has
shown how, given any square matrix x with elements in the complex field, it is
possible to define another matrix, coinciding with x~! whenever x~! happens to
exist, and having (even for singular x) properties leading to simple proofs of
several theorems which yield to other methods only with difficulty (if at all).
More precisely, Moore’s result (stated in Penrose’s form) is that, given any
square™® complex matrix x, then there is always exactly one complex matrix ¢
satisfying

cxc =c¢ and xcx = x,

cx and xc are both hermitian.

Following Penrose, we denote this unique matrix ¢ by xt, and call it the general-
12ed inverse of x; for evidence of the value of this concept, we refer the reader
to the work of Moore and Penrose ([5], [6], [7]).

It is clear from Penrose’s arguments that the function xt thus defined for
square complex matrices can be extended to the elements of any finite-dimen-
sional algebra R over the complex field by the standard device of mapping R
isomorphically into the algebra M, of all #X# complex matrices (e.g. with
n=1+4dim R), provided that the image of R in M, admits the operation of
forming transposed complex conjugate matrices. However, there seems to be
no prospect of extending Moore’s generalized inverse concept so as to apply to
finite-dimensional algebras over a given division ring F unless F at any rate
admits an involutory anti-automorphism N—X\ such that A+ - - + +Ahn =0
implies ;= - - - =\,=0. (This, of course, would restrict F to having zero
characteristic.) ~

In this note we show how to define a function, somewhat analogous to the
generalized inverse function, over the elements of arbitrary finite-dimensional
algebras, and even of an extensive class of associative rings. Indeed, all of our

* In fact, Moore and Penrose considered rectangular matrices, but this aspect of the result is
not relevant here.
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theorems in Section 2 below apply equally well to arbitrary semigroups; how-
ever, we shall for brevity, generally use the language of ring theory.

Given any associative ring R, and any element x of R, we shall call ¢ pseudo-
invertible (in R) if an element ¢ of R exists satisfying

@A) cx = xc,

(i) x™ = x™¢ for some positive integer m,
and

(iii) ¢ = ck.

By Theorem 1 below, these three conditions determine ¢ uniquely when it exists,
so we may refer to ¢ as the pseudo-inverse of x. We show also (inter alia) that
the existence of such a ¢ in fact follows from the apparently much weaker
hypothesis that elements a, b of R exist such that

xP = xp+1a, x? = pxatl

(for some positive integers p, ¢); in other words, pseudo-invertibility (as applied
to a given element x of a given ring) coincides with Azumaya’s property [2] of
strong w-regularity. Since it is known that every element of any algebraic ring
(as defined in [3]), or of any ring with minimal condition on left or right ideals,
is strongly w-regular, it follows that our pseudo-inverse function is applicable
to all such rings (and, in particular, to matrices and all finite-dimensional
algebras). The specialization of pseudo-invertibility in which (ii) above holds
with m =1 was discussed by Azumaya, and indeed some of our arguments below
are, formally, only slight generalizations of his: the essence of our present con-
tribution is that (i), (ii) and (iii) determine ¢ uniquely even when m is unre-
stricted (and indeed variable). The case m =1 of pseudo-invertibility, but with
(iii) omitted, was discussed by A. H. Clifford [10], who called the corresponding
property “relative invertibility”; in view of our Theorem 4 below, this property
of relative invertibility is, in fact, precisely equivalent to pseudo-invertibility
with m=1.

In our third section, we use pseudo-inverses to obtain a simple proof of
another result of Azumaya ([2] Theorem 4). At the suggestion of a referee, we
describe, in a concluding section, another way of looking at pseudo-inverses in
any semigroup S: it turns out that our definition can be equivalently expressed,
in a natural and simple way, in terms of certain idempotents and maximal sub-
groups of S. After Moore’s and Penrose’s work, it seems not unreasonable to
hope that the pseudo-inverse may prove to be a useful tool in dealing with those
rings in which it is everywhere defined, and that the publication here of the
basic properties of pseudo-inverses may perhaps serve as a starting-point for
other applications.

2. General results on pseudo-inverses. In this section we establish a number
of facts about pseudo-inverses in rings (or semigroups) not subjected to any
global conditions. First and most fundamentally, we have
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THEOREM 1. Let R be any given associative ring (or semigroup), and x any
element of R. Then x has at most one pseudo-inverse in R, and, if a pseudo-inverse
for x does exist, 1t commutes with every element of R which commutes with x.

Proof. Let ¢, ¢, satisfy conditions corresponding to those imposed on ¢ by
(i), (ii) and (iii) of our definition of pseudo-invertibility, say with integers m, m.
in (ii). Then, on writing m =max (m1, m,), the conditions on ¢, ¢, arising from
(1), (ii) certainly imply

(A) g™t = gm = gmtlc,y,
while those arising from (i), (iii) certainly imply

2 2
(B) c1 = c1%, Ca = XCo.

And in fact (A), (B) together imply that ¢;=c,. For, by induction from (B),
we have ¢ =cit'x*, c;=xkcs™* (k=1, 2, ---), and in particular ¢;=c"xm,
ca=xmcy™! whence, by (A),
m+1l m m+1 m+1
Ci1 = ¢C1 X =¢ X Ca = C1XCa = * * * = (Ca.
Thus x has at most one pseudo-inverse c. Also, if ¥ is any element of R satis-
fying xy =yx, then, by (ii) and (i), we find

cx™y = cyx™ = cyxmtlc = camtlyc = xmyc,

whence ¢mtlxmy =xmycmt1; but, as above, (iii) gives ¢=c™tx™, and so, using (i)
again, we conclude that

cy = Cm+1xmy — xMycm+1 = ycm+lxm = vyc,

as required.

In view of Theorem 1, we may denote the unique pseudo-inverse of a given
pseudo-invertible element x by x’; obviously, whenever x~! exists in the ordinary
sense, then x’ exists and &’ =x~!. It should be noted that, when it is defined at
all, #’ is independent of what ring we think of x as lying in (in the sense that, if
Ry, R are subrings of a given ring R and x lies in Ri/M\ Ry, having pseudo-inverses
¢y, €2 in Ry, Ry respectively, then ¢, ¢, being pseudo-inverses for x in R, must co-
incide).

COROLLARY 1. If %1, - - -, x; are given pseudo-invertible elements (of some
ring) with xx,=0 (s, t=1, - - -, j; s5#t), then x1+ - - - +x; is also pseudo-
invertible, with (x4 - - - +x;)" =%+ - - - +x.

Proof. There will clearly be no loss of generality in supposing from the out-
set that j=2; and it will also be convenient to write #, v in place of x1, x5. By (i),
the hypothesis #v=v# (=0), and a double application of the last part of Theo-
rem 1, we see that u, v, #/, v all commute with one another; further, by (iii),
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any product of these which simultaneously involves % or %’ and also v or »’ can
be expressed as a product involving both # and 9, and must consequently van-
ish. Hence

(@ + o)+ ) = (u+ ) + ),
(W 4+ ) (u+ ) =uu+ v =u+o
and, choosing m so large that um=um+tly’ ym=y"+y’ we have
(u + )™ + o) = wtly' + vt = gy o = (u + v)™;

by the first part of Theorem 1, the result now follows.

Given any pseudo-invertible element «x of a ring, then, by (ii), there will be
a unique (positive) integer 7(x) such that x™=x"+lx’ for every m =1(x) but for
no m <i(x). We shall refer to i(x) as the index of x; again, provided that it does
indeed exist, this integer 7(x) does not depend on what ring we regard x as
lying in. If x is not pseudo-invertible, then we take i(x) = © conventionally.

The special case of Theorem 1 in which m;=m;=1 is, apart from differences
in terminology, just Azumaya's ([2] Lemma 1) with the existence clause
omitted;* our next result, however, is of interest chiefly when 7(x) >1.

THEOREM 2. Let x be any pseudo-invertible element (of some given ring) and k
any positive integer. Then x* is pseudo-invertible, with (x*)' = (x")*, and i(x*) is the
unique (positive) integer q satisfying 0 Skg—i(x) <k.

Proof. By (i), x*(x')* = («/)*x*. Also, by induction from (ii), (iii) respectively,
we have i@ =yxi@+i(x")i ' = (x')i+1x? (j=1, 2, - - - ), so that, since kg=i(x),

(xk)q —_ xkq—i(z)xi(z) = xkq—i(z)xi(:z)+k(x')k — (xk)q+1(xl)k,
(&) = (&)1 (a")Hab = ((«)*)%*.

Thus (x')* satisfies the conditions for (x*)’, and i(x*) <q.

Finally, (x*) <g would mean that (x*) ¢~ = (x*) 2(x")*, and, since &’ = x*~1(x")*,
this in turn implies that &*(e=D = xke= -1y’ = xk(¢e=D+1y’ whence, by the defini-
tion of i(x), we should have k(g—1) 2i(x), contrary to our definition of g.

THEOREM 3. Given any element x of a ring, then if x is pseudo-invertible so is
x'; in fact x' has index 1 whenever it exists, and then x'' =x%x'.

To prove this, one has merely to verify that, if ¢ satisfies (i), (ii) and (iii),
then d =x2%c satisfies ¢d =dc, c=c%d, d=d?. We omit the details, and also leave
to the reader the proofs of the following equally trivial joint corollaries of Theo-
rems 1, 2 and 3:

* The last clause of Theorem 1 in this special case has also been set as a problem by T. Skolem

[o].
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COROLLARY 2. Given any element x of a ring R, then x'" =x if and only if x is
pseudo-invertible with index 1; and, when this is the case, for any given element y of
R, x commutes with y if and only if x' does.

COROLLARY 3. Given any pseudo-invertible element x of a ring, then (x%)"" =x*
for every integer k=1i(x).

COROLLARY 4. For any pseudo-invertible element of a ring, x'"' =x'.

We have already noted that an element x of a ring R is called strongly w-regu-
lar in R if elements a, b of R and positive integers p, ¢ exist such that

¢)) x? = xptlg, x? = pyotl,
We now prove

THEOREM 4. Given any element x of a ring R, then x is pseudo-invertible in R
if and only if it is strongly w-regular in R.

Proof. That pseudo-invertibility implies strong w-regularity is obvious (even
without using (iii)). Conversely, we shall show that (1) implies (i), (ii) and (iii)
with m =max (p, ¢) and ¢=xma™*1,

We note first that (1) gives

¥mtlg = gm = hamtl,

so that xma=bx"t'-a=p -xm+a=bx™, whence, by induction, x™a*=~>bkx™
(=1, 2, :). Thus our choice c=xma™t! can equivalently be written ¢
=pmtixm and we have:

(i) xc=x-xmamtl=xmtlg-gmn=xmgm=phmxm= . - . =cx by symmetry;
(ii) By another induction, x™=xm+%q* (k=1, 2, - - - ), and so

x'm"'lc = xm+1.xmam+1 = xm+(m+1)am+l = xm;

(iii) By (i) and (ii) which we have just proved,

¢t = ¢-xc = ¢-xmHlgntl = gmtlp. gntl = gmgmtl = ¢,

It is clear from this proof that (1) ensures that 7(x) <max (p, ¢), and (cf.
[2] Lemma 3) indeed it is easy to see that in fact i(x) Smin (p, ¢): for if, say,
p<g, then (1) gives x? =x?+(e—p)ge—r=x9q77?, g0 that bx?*!=bx x%9?=hx*!
-1 P =x99?=x?, In view of this, our Theorem 4 includes Azumaya’s Theorem
3, in which he proved that strong w-regularity implies the existence of ¢ satisfying
(i) and (ii); we can arrange for uniqueness only by introducing some additional
restriction such as (iii). For a discussion of the implications subsisting between
strong w-regularity (¢.e., pseudo-invertibility), right w-regularity, left w-regular-
ity and w-regularity, we refer the reader to Azumaya’s paper.

COROLLARY 5. Let R be any finite-dimensional algebra. Then, for any given
X ER, &’ exists and lies in the subalgebra generated by x.
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Proof. If R has dimension &, then x, x?, - - -, x¥*! are linearly dependent,
and so, for some j=<k-1, x7 is a linear combination of x/*+!, x#+2 . . . hence
even of x7+? and higher powers. Thus x is strongly w-regular, with =5 in (1) ex-
pressible as polynomials in x (without constant terms); the corollary now fol-
lows from the form of ¢ in the proof of Theorem 4 above. More generally, the
result clearly holds even for all “algebraic rings” (in which, by definition, there
corresponds to each element x an integer j(x) such that x7® is a linear combina-
tion of x7@+*! and higher powers).*

We remark that, immediately from the definition and uniqueness property,
the operation of taking the pseudo-inverse (when such exists) of a given element
commutes with all homomorphisms and antihomomorphisms of the containing
ring. In particular, for any matrix algebra over the complex field, the pseudo-
inverse of the complex conjugate (or transpose) of a given matrix is the same
as the complex conjugate (or transpose) of the pseudo-inverse. Thus the pseudo-
inverse of a given complex matrix x is real (symmetric, hermitian, etc.) whenever
% is; and, even for arbitrary square complex matrices, it can be shown (e.g.,
by using (iii) and Corollary 5) that the property of having all eigenvalues real
and nonnegative is also preserved.

3. Sufficient conditions for pseudo-invertibility in rings.

Following Azumaya, we call an element x of a ring R right m-regular in R
if a positive integer p and an element a of R exist such that x» =x?*1g, In these
circumstances we shall define the right index of x in R, denoted by r(x) (or more
precisely rr(x)), as the smallest integer p occurring in any such representation;
and we take 7(x) = © whenever x is not right w-regular. Thus 7(x) is defined for
all elements of R; and we define the left index I(x) =Ir(x) of x in R similarly.
Then, for any given x, we know from Theorem 4 that i(x) is finite (s.e., x is
pseudo-invertible) if and only if 7(x), /(x) are both finite, while our remark fol-
lowing Theorem 4 shows that then in fact§ 7(x) =1(x) =(x).

This “local” result (i.e., concerning only the single element x) is new, but a
still more striking “global” result has been known for some time ([4] p. 74).
Given any subset T of a ring R, let us write

2(T) = sup i(x), r(T) = sup r(x), UT) = sup I(x),

where each upper bound is taken over all x&T (with the natural convention
for infinite values}). Obviously #(T) £¢(T), and Kaplansky’s result (or rather

* In the case of a square matrix x over an algebraically closed field F, we could alternatively
prove the existence of ' by combining Corollary 1 (fer j=2) with the well-known fact that x is
similar over F to diagonal (u, v), where #, v are square matrices over F with % (if occurring) nil-
potent and v (if occurring) nonsingular.

§ For a pseudo-invertible element x, the common value of 7(x), /(x) and #(x) coincides with the
value of the “index of x” as defined by Azumaya (whose definition concerned only pseudo-invertible
elements); but it is important in what follows that #(x), I(x) and 4(x) are meaningful for arbitrary x,
and that 7(x), I(x) (separately) can be finite even for nonpseudo-invertible x.

1 More precisely, we take #(T") = « whenever the 4(x) with & T are finite but unbounded, and
also whenever i(x) = « for some x& T'; and similarly for #(T'), I(T).
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a slightly-strengthened form of it) is that, if #(R) is finite, then so is 72(R) and in
fact 7(R) =7(R); moreover, by our final remark in the previous paragraph, we
even have i(x) =7(x) =I(x) < © for each xER.

To motivate the next theorem (which was discovered by Azumaya, and does
not seem readily extensible to semigroups), we note first that our definitions of
i(x), r(x), I(x) are of course consistent with the accepted meaning of the “index”
of a given nilpotent element of a ring. More precisely, every nilpotent element
x is clearly pseudo-invertible (with x’=0), so that 7(x) =r(x) =I(x) < ©, and
satisfies ¥ =0, x*@ 1540 (since x*@ =xi@+k(x’)* for arbitrarily high &, while
x1@—1=0 would contradict the definition of 7(x)). Thus, if N =N(R) denotes the
set of all nilpotent elements of the ring R, then we always have ¢(N)=r(N)
=](N) (possibly all infinite), and 7(V) < = expresses the condition that the nil-
potent elements of R have bounded index.

In ([2] Theorem 4), Azumaya generalized Kaplansky’s result that the finite-
ness of 7(R) implies that of 2(R); replacing the finiteness of 7(R) by that of (),
he showed that this obviously weaker hypothesis in fact implies that 7(x) <7(V)
whenever 7(x) (or I(x)) is finite. We present now a new and very simple proof,
bearing only a slight resemblance to Azumaya’s (and none to Kaplansky’s), of
this result.

THEOREM 5. Let R be any associative ring whose nilpotent elements have bounded
index (i.e., with finite bound i(N)). Then every right mw-regular element x of R is
pseudo-invertible, with i(x) =r(x) =1(x) S<i(N).

Proof. Given any right w-regular element x of R, say with x?» =x?+1g, we shall
first show that x is necessarily pseudo-invertible; by Theorem 4, it will be
enough to find b&ER and a positive integer ¢ such that x?=>bxt1,

Now, by induction, we have x? =x?*¥g* and so

aPth(xp — ghypth) = (xp — gPthgh)grth = 0 (k=1,2,---).

Also each of the 2¢ monomials in the expansion of (x?—a*x?**)t has x?** as a
right-hand factor provided only that pt=p-k, and so, for each k, we have
(x? —alx?t*)t+1=0 for large enough . Hence, by our hypothesis that (&) is
finite, it follows that (x? —akxrt*)iV) =0, so that x*¥)»r& Rx?r+* (=1, 2, - - - ).
Choosing k= (i(IV) —1)p+1, we deduce that an element b of R exists such that
x9=>bxet1, where ¢=1(N)p.

Thus x is pseudo-invertible, so that (i) and (ii) clearly give (x—x%')"=
for some m, whence (x —x2x')*®) =0; hence, by (i), x¢¥) =xi@)+1y for a suitable
polynomial ¥ in %, x’ (with integer coefficients and no constant term), and so,
finally, by (i) and the proof of Theorem 4, we can conclude that 7(x) S<(V).
(Also, incidentally, we have the explicit representation x’' =x?a?+1),

COROLLARY 6. Let R be any associative ring whose nilpotent elements have
bounded index. Then, if every element of R is right w-regular, R must in fact be
boundedly right w-regular, i.e. r(R) is finite, and indeed r(R) =i(R) =i(N) < .
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To deduce this from the theorem, we have only to note that 7(R) <<(R) =4(N)
=7(N)=r(R) (the inequality #(R)=4(N) following from Theorem 5 and the
hypothesis of the corollary, while the other relations are obviously true in any
ring); and of course Kaplansky’s result is included in Corollary 6. We remark
also that, by Azumaya’s ([2] Theorem 5), one may, in the hypothesis of Corol-
lary 6, replace “right w-regular” by “w-regular.”

Some familiar examples of rings satisfying the hypotheses of Corollary 6 are
(a) rings with minimal condition on (say) right ideals, and (b) algebraic rings of
bounded degree (or, more generally, of bounded index); but it is already known
(see [1] Theorem 3.1 and [4] p. 74) that rings of type (a) have 7(R), I(R) finite,
and this is obvious in case (b). However, Arens and Kaplansky’s proof that
7(R) is finite in case (a), though brief enough, depends on the Wedderburn-Artin
structure theory, and it would be gratifying to find a direct proof. We mention
in this connection that, since every element x of any ring of type (a) is (from
consideration of the descending chain of principal right ideals generated by the
powers of x) clearly right w-regular, it would, in view of Corollary 6, suffice to
prove (directly) the finiteness of 2(XN); and, for this, since the rings in question
have nilpotent (Jacobson) radicals, only the semisimple case need be considered.

4, Concluding remarks. The author is grateful to a referee for pointing out
that, even in the context of arbitrary semigroups, the definition of pseudo-
invertibility can be rephrased in a way that may perhaps make it more im-
mediately available as a tool for tackling certain problems. To do this, given any
element e of a semigroup S, let G, denote the set of all elements ¢ &.S such that

(@) ae = ea = a, and (B) ab = ba = e for some b & S.

Clearly, if G, is nonempty, then e is necessarily idempotent, and, conversely,
we have (this being, essentially, Lemma 1.3 of Clifford’s paper [10]).

THEOREM 6. If e is idempotent, then G, is a group with e as identity element,
and moreover every subgroup G of S containing e is in fact a subgroup of G..

Proof. To prove the first assertion, it clearly suffices to show that, given any
a€G,, we can find an inverse for ¢ in G.; and (e being idempotent) this is im-
mediate, since (@), (8) for @ and any corresponding b imply that ebe €G,, so that
ebe is the inverse of ¢ in G..

For the second assertion, we have only to note that e must be the identity
of any subgroup G in which it lies, so that (a), (8) are immediate for all e EG,
as required.

COROLLARY 7. The maximal subgroups of S are precisely the subgroups G. with
e idempotent.

We next have

THEOREM 7. Given any element x of a semigroup S and any positive integer m,
then the statement



514 PSEUDO-INVERSES IN ASSOCIATIVE RINGS [September

(1) x is a pseudo-invertible element of S with index at most m
s equivalent to
(2) there is an idempotent eSS such that ex=xe G, and x»<G.,.

Proof. To see that (1) implies (2), we mention first that (i) and (iii) of the
definition of pseudo-invertibility imply that e=xc=cx is idempotent. Also, by
(i), ex=xe and (ex)e=e(ex) =ex, while (iii) gives (ex)c=c(ex)=e; hence ex
=xeE&G,. Similarly, (ii) becomes x™=x™e, so that xme=ex™=xm™, while (i) and
(iii) give xmc™=cmx™=¢, whence x*EG, and (2) follows.

Conversely, given (2), let ¢ denote the inverse of ex=xe in the group G..
Then ce=ec=c¢ and cex=xec=e, whence cx=xc=e¢ and c¢=ce=c2x, which are
(i) and (iii). Finally, if x*€G,, then we have x™=xme =x™"1¢, which is (ii).

COROLLARY 8. An element x of S is pseudo-invertible with i(x) =1 if and only if
x belongs to some maximal subgroup of S.
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