Lecture 5: Matrix Volume




Index sets of maximal full-rank submatrices

Given A € C"*", we denote

I(A)={I € Qrm : rank A|l,*| =1},
J(A)={J € Qp,: rank A[x, J| =1},
NA)={(,J): I €Qrm,J € Qrn, All,J] is nonsingular} ,




Index sets of maximal full-rank submatrices

Given A € C"*", we denote

I(A)={I € Qrm : rank A|l,*| =1},
J(A)={J € Qp,: rank A[x, J| =1},
NA)={(,J): I €Qrm,J € Qrn, All,J] is nonsingular} ,

If
A=CR

is a full rank factorization, then




The Gramian

The Gram matrix of a set S = {x1,x9,...,x} CR" is the k X k

matrix G(S), or G(x1,Xs,...,Xx), of inner products
G(X17X27 IR 7Xk)[i7.j] = <Xi7Xj> .
det G(x1,X3,...,X;) is the Gramian of {x1,xo,...,x1}.

If {x1,Xo,...,X}} are columns of X € R™"** then

det G(x1,...,%,) =det X' X = Z det®* X1, , (by C-B)
Ier,n




The Gramian

The Gram matrix of a set S = {x1,x9,...,x} CR" is the k X k

matrix G(S), or G(x1,Xs,...,Xx), of inner products
G<X17X27 IR 7Xk)[i7j] = <Xi7Xj> .
det G(x1,X3,...,X;) is the Gramian of {x1,xo,...,x1}.

If {x1,Xo,...,X}} are columns of X € R™"** then

det G(x1,...,%,) =det X' X = Z det®* X1, , (by C-B)

IEQk,n

(a) The set S is linearly dependent iff G(S) = 0.
(b) The volume of the parallelepiped generated by the vectors

{X17X27 <. 7X]€} 18

vol{x1,Xa,...,X;} = \/det G(x1,Xa,...,X;)

(in the subspace span {x1,Xs2,...,X;}, not in R" if k < n)




Volume

The volume of a matrix A € R"*" denoted vol A, is defined as 0

if » = 0, and otherwise

vol A := Z det2 A[J . (1)
(I,J)EN(A)




Volume

The volume of a matrix A € R"*" denoted vol A, is defined as 0
if » = 0, and otherwise

vol A := Z det2 A[J . (1)
(I,J)eN (A)

(a) If C € R™*" (full row rank) then vol C' = vdet CTC.
(b) If R € R™*™ (full column rank) then vol R = v/det RRT.
(c) If A= CR is a full rank factorization then

vol? (A) = Z vol® (Ar,)

I€T(A)
> vol? (Auy)
JeT(A)
= vol? (C) vol® (R)

Proof. Each nonsingular Ay is Cr Ry, I € Z(A),J € J(A).




Singular values

Theorem. The volume of A € R**" is the product of its

singular values {01, -+ ,0,}
vol A = H o;
o, €0(A)

Proof. The SVD of A,

Y11 O
O O

A=USV* = [Ul UQ}

is a full rank factorization

A= UlEHVl* y with UfUl — Vl*Vl = ]74 .

. vol A = VOIEH = H g;
o,€0(A)




Why ”volume”?
Let {v;: j € 1,7} be an o.n. basis of R(A*A) = R(A*) such that

A*Av; = O'2Vj , jel,r,

)

Then an o.n. basis {u; : j € 1,7} of R(A) is given by

AVJ‘ — O'j llj

showing that A maps the unit cube [1{v,vsy,---,v,} into the
cube [J{ojuy,00us, -+ ,0,.u,} of volume o105 ---0,. But the
singular values are orthogonally invariant, and therefore every

unit cube in R(A*) is mapped into a cube of volume o105 - - - 0,

Given A € R™*™ the volume of A is an intrinsic property of

the linear transformation in £L(R"”,R™) represented by A.




LSS
Let A e R"*"™ | b € R™. Then the LSS of Ax = b is

det2 A[*

Ab= S NAIb, A= 2
IET(A) 2, det” Ag.

Ex. n=1. KeZ(4)

The LSS is

k=1

This trivial example proves the general case.




MNLSS in 2 stages
For A € R""*" b € R™, the MNLSS of the linear equation

Ax =Db,

is the solution of a two-stage minimization problem:

Stage 1: minimize ||[Ax — b||

Stage 2: minimize ||x|| among all solutions of Stage 1




MNLSS in 2 stages
For A € R""*" b € R™, the MNLSS of the linear equation

Ax =Db,

is the solution of a two-stage minimization problem:
Stage 1: minimize ||[Ax — b||
Stage 2: minimize ||x|| among all solutions of Stage 1
Let

A=CR
be a full rank factorization. Then:
Stage 1: minimize ||Cy — b||

Stage 2: minimize ||x|| among all solutions of Rx =y

The problem (1a), unlike (1), has a unique solution y = C'b.




Full rank systems

Lemma.
(a) Let C € R™*" | b € R™. Then the LSS of

Cy=Db,

VO]QC[*
vol°C

Yy — Z T C]_*lbla HIsx =

[€T(C)




Full rank systems

Lemma.
(a) Let C € R™*" | b € R™. Then the LSS of

Cy=Db,

VO]QC[*

_1
Yy = Z T % C]* br, pre= vol2C

[€T(C)

(b) Let R € R™*" | y € R”. Then the MNS of

Rx =y,

— vol’R, s

—1
X = E vig R_7Y , Vig=

D)
JeT(R) vol“ R



MNLSS as convex combination

Theorem (Berg). Let A € R™*" | b € R™. Then the MNLSS of
Ax =Db,

is the convex combination

L~

X = Z )\[JAI_} b[ y
(I,J)EN(A)

with weights given by

detQAU

Z detQAKL
(K,L)EN (A)

(L J) e N(4). (3)

A1 =

Proof. Let A = C'R be a full rank factorization, and use previous

lemma and the fact

A[J:C[*R*J, \V/IEI(A),JEJ( )




Weighted LS

Consider next a weighted least squares problem
min ||DY2(Ax —b)||, D =diag(d;), d; > 0. (1)

Theorem (Ben—Tal and Teboulle). The solutions of (1), i.e.,
the least—squares solutions of DV/2Ax = D'/?b, satisfy the normal
equation, AT DAx = AT Db . The MN (weighted) LSS is

e~

x(D) > A(D)Abr,
(I,J)EN(A)

with weights

(Hz’EI dz) detQA]J

> ([Ler di) det*Agp
(I,J)eN(A)

Arj(D) =

Note: Only the weights A\;; depend on D.




Bordered matrices

Let A € R™*™ and let
U e R™(m=7) " ¢olsU = o.n. basis N(AT) ,
V e R cols V = o.n. basis N(A) .
Consider the bordered matrix,
A U
B(A) =

vt O

and if m = n, the complemented matrix,

C(A) :=A+UV"T.

vol A = |det B(A)] ,
= |det C(A4)] .




The change-of-variables formula in integration

Theorem (Jacobi general n, Euler n = 2, Lagrange n = 3)

[ swav = [ (oo et s (w) du 1)




The change-of-variables formula in integration

Theorem (Jacobi general n, Euler n = 2, Lagrange n = 3)

[ swav = [ (oo et s (w) du 1)

U,V sets in R™,

¢ : U — V a sufficiently well-behaved function,

f is integrable on V,

dx denotes the volume element |dzi A dzs A --- Adx,|,

Js is the Jacobian matrix (or Jacobian)

Jy = (&bz) ., also denoted V1, V2, ¥n) : (2)

P, OIS

representing the derivative of ¢.

An advantage of (1) is that integration on V is translated to
(perhaps simpler) integration on U.

13-a



The change-of-variable formula (cont’d)

/ F(v)dv = / (f 0 6)(u) |det Jy(u)| du (1)
Y U

If i C R™ and V C R™ with n > m, formula (1) cannot be applied.




The change-of-variable formula (cont’d)

| 1wy = [ (roopw jdet Jy(w) du (1)
If i C R™ and V C R™ with n > m, formula (1) cannot be applied.

However, if the Jacobian Jy is of full column rank throughout ¥,
we can replace |det J,| by the volume vol J; of the Jacobian to
get

[ iy = [ (706w volJy(u)du (2)
% U

Here,

vol J, = \/det (JT J,) (3)

since Jy is assumed of full rank, and (2) reduces to (1) if m = n.

14-a



Example in surface integration

Let S be a subset of a surface in R? represented by

z=g(z,y),

and let f(x,y, z) be a function integrable on S. Let A be the
projection of S on the xy—plane. Then

W W
S=¢(A), or |y Y
z g9(x,y)

The Jacobi matrix of ¢ is the 3 X 2 matrix

o) = T

dg dg

where g, = . Gy = (9—y




Example (cont’d)

vol J, = vol - \/1+gg+gg.




Example (cont’d)

vol Jg = vol

16-a



Cylindrical coordinates

Let S be a surface in R?, represented by
z=2z(r,0)

where r, 6 are cylindrical coordinates,
x =1 cosb
y =1 sinf
z = z(r,0)




Cylindrical coordinates

Let S be a surface in R?, represented by
z=2z(r,0)

where r, 6 are cylindrical coordinates,

x =1 cosb
y =1 sinf
z = z(r,0)

The Jacobil matrix is
d(z,y, 2) _(3059 —7r sin 9_
R4 sinff r cosf

a(r,0) | o: 9z
| Or 00 _

Jp =

and its volume is
2

17-a




Cylindrical coordinates (cont’d)

An integral over a domain V C § is

/Vf(:v,y,?:)dVZ

/ f(r cosB,r sinb, z(r,0)) volJy(r,0) dr db
U




Cylindrical coordinates (cont’d)

An integral over a domain V C § is

Lf@%@ﬂ“=

/ f(r cosB,r sinb, z(r,0)) volJy(r,0) dr db
U

If § is symmetric about the z—axis, then

0z

50 =0, i.e z=2z(r),

Af@%@ﬂ“=

/ f(r cosO,r sinf, z(r)) r/1+ 2/ (r)2 dr df
u

18-a



Surface integral in R"
Let x = (x;), and x[1, k] := {(x;) : i € 1, k}.
A surface § in R™ is given by given by

Lp = 9(331, T 73371—1) — g<X[17 (n o 1)]) )

Let
Y C S, f integrable on V, and it is required to calculate

/ f(x)ds (2)
g

U the projection of V on R™" !, the space of variables x[1:(n — 1)],

¢ : U — V, the mapping given by its components
Qb ‘= (§b17¢27---7¢n> )

¢i(x[1, (n —1)))
¢n(x[1, (n —1)])




Surface integral in R" (cont’d)

The Jacobi matrix of ¢ is

dg dg 0Oy dg

_(9331 (9332 8a;n_2 8£Cn_1_

and its volume is

n—1
vol Jy = \ 1+ Z ((%]i)2
i=1

/ f(x[1,(n—=1)],9(x[1,(n—1)])) vol Jpdzy - - - dxy_1
U




Radon transform

Let He¢ , be a hyperplane in R™ represented by

where the normal vector £ = (&1, ,&,) of He , has &, # 0.

Then He ) 1s given as




Radon transform (cont’d)

The volume of J, is here

_ Ll
vol Jy = \1+Z ( n) = e (4)

The Radon transform (Rf)(&,p) of a function f: R” — R is its
integral over the hyperplane Hg ,,

®RAED) = [ Fix. (5)

{x: <€¢x> = p}

The Radon transform can be computed as an integral in R™? ™1

(Rf)(f, ) H€|| / f (X[l, <n _ 1)]’ z_: é xz) dxry--- dxn—l

‘g’n| i=1 fn

n—l

(6)




Integrals over R"

Consider an integral over R",

R[ f(X)dXR[ f(x1, 29, -, xn)dey - - - day,

Since R™ is a union of (parallel) hyperplanes,

U {x:<&x>=p}, where & #0,

p=—00

Compute (1) iteratively: an integral over R”~! (Radon

transform), followed by an integral on R,

oo

dp




Integrals over R” (cont’d)

oo

dp
||£H

Here dp/||&|| is the differential of the distance along & (i.e. dp
times the distance between the parallel hyperplanes H¢ , and

Then by the result for the Radon transform,

(Rf)(&:p) (3)




Application in Probability

Let X = (X4q,--,X,,) have joint density fx(z1,---,z,) and let

y:h($17°'° 7377%) (1)
where h : R — R is sufficiently well-behaved, in particular

oh

9. 7 0

and (1) can be solved for z,,,

Ln = h_l(y|x17 T 7xn—1)

with x1, -+, r,_1 as parameters.

It is required to find the density fy(y) of Y.




Method 1

Change variables from {xq, -+ ,z,} to {x1, -+ ,z,_1,y}, and use
the fact

o« o o _1
ot ( O(x1, ,xp) ) _ oh
8(3717"' 7$n—1ay> ay
to write the density of Y = h(Xy,---,X,,) as

fy(y) =

/ fX(CUh'" 737n—1:h_1<y‘5517"' 7$n—1)) |
Rn—l




Method 2
Let V(y) be the surface given by (1), represented as

L1

= ¢
n—1

Ln—1 :
\ Ln ) \h y‘xlv ' 7$n—1)) Ln—1

Then the surface integral of fx over V(y) is




The density of Y = A(Xy, -+, X))

Theorem. If the ratio

Oy
n—1 . 2
1+ > (85% )
i=1

then

does not depend on x1, - ,Tp_1 , (X)

Proof. Compare (4) and (6).




Hyperplanes

Condition (X) holds for hyperplanes. Let
y = hiz1,

where € = (&1, -+ ,&,) is a given vector with &, # 0. Then (2) is

Tn=h" (ylzr, - Tn1) Zg—

Oh—1
oy

n—1 . 2
1+ a;x;) :\1+

1=1

and




Hyperplanes (cont’d)

Corollary. Let X = (X1, X3, -+ ,X,,) be random variables with
joint density fx(z1,x2, -+ ,x,), and let 0 # & € R".

The random variable

Y = zn: §i X
i=1

has the density

where (Rfx)(&,y) is the Radon transform of fx,

(Rfx)(§,y) =
el [ (o
|£n‘ / fX ( 1

Rn—l




Spheres
Condition (X) holds for spheres. Let

y:h($17°” 73771):

which has two solutions for x,,, representing the upper and lower
hemispheres,

Ln = h_l(y‘ L1y 73771—1) L= j:\

1
with Oh




Spheres (cont’d)

Corollary. Let X = (X4, -+ ,X,,) have joint density
fx(x1, - ,x,). The density of

Y:f: X2
1=1

1
fY(y)—mS ({F) Ix
n (VY

where the integral is over the sphere Sn(\/g) of radius /y,




Spheres (cont’d)

computed as an integral over the ball B,,_1(,/y),




