Lecture 6: The Group Inverse
The matrix index

Let $A \in \mathbb{C}^{n \times n}$, k positive integer. Then $R(A^{k+1}) \subset R(A^k)$. The index of A, denoted $\text{Ind } A$, is the smallest integer k such that

$$R(A^k) = R(A^{k+1}),$$

or equivalently, $\text{rank } A^k = \text{rank } A^{k+1} \quad (1)$

holds. Then

$$R(A^j) = R(A^{\text{Ind } A}), \quad \forall \ j > \text{Ind } A .$$

A matrix A is range Hermitian (or EP matrix) if

$$R(A) = R(A^*)$$

Special cases: (a) Nonsingular matrices, (b) normal matrices, in particular (c) $A = O$.

If A is range Hermitian, then $\text{Ind } A = 1$.

The converse is not true, e.g., $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
Index and complementary subspaces

Theorem. Let $A \in \mathbb{C}^{n \times n}$ have index k, and let ℓ be a positive integer. Then $R(A^\ell)$ and $N(A^\ell)$ are complementary subspaces if and only if $\ell \geq k$.

Proof. The theorem is obvious for nonsingular matrices.

Let $A \in \mathbb{C}^{n \times n}$. Then, for any positive integer ℓ,

$$\dim R(A^\ell) + \dim N(A^\ell) = \text{rank } A^\ell + \text{nullity } A^\ell = n.$$

$$\therefore \mathbb{C}^n = R(A^\ell) \oplus N(A^\ell) \iff R(A^\ell) \cap N(A^\ell) = \{0\}.$$

From

$$R(A^{\ell+1}) \subset R(A^\ell) \text{ and } N(A^\ell) \subset N(A^{\ell+1}),$$

it follows that

$$\mathbb{C}^n = R(A^\ell) \oplus N(A^\ell) \iff R(A^\ell) = \dim R(A^{\ell+1}). \square$$
Nilpotent matrices

A matrix N is nilpotent if $N^k = O$ for some integer $k \geq 0$. The smallest such k is called the index of nilpotency of N.

Let $J_k(\lambda)$ be a $k \times k$ Jordan block,

$$J_k(\lambda) = \begin{bmatrix}
\lambda & 1 & \cdots & \cdots & 0 \\
\vdots & \lambda & 1 & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & \cdots & \lambda
\end{bmatrix}$$

Then $J_k(\lambda)$ is nilpotent if $\lambda = 0$,

$$\text{ind } J_k(\lambda) = \begin{cases}
1, & \text{if } \lambda \neq 0; \\
 k, & \text{if } \lambda = 0.
\end{cases}$$
Jordan blocks

Let $A \in \mathbb{C}^{n \times n}$, $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_k \end{bmatrix} \in \mathbb{C}^{n \times k}$ and $\lambda \in \mathbb{C}$ satisfy

$$AX = XJ_k(\lambda), \quad \text{where} \quad J_k(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{bmatrix} \in \mathbb{C}^{k \times k},$$

$$\therefore A x_1 = \lambda x_1,$$

$$A x_j = \lambda x_j + x_{j-1}, \quad j = 2, \ldots, k.$$

$$\therefore \forall j \in 1, k : (A - \lambda I)^j x_j = 0, \quad (A - \lambda I)^{j-1} x_j = x_1 \neq 0,$$

x_1 is an eigenvector of A corresponding to λ

x_j is a λ–vector (principal vector, generalized eigenvector) of A of grade j
Powers of the matrix \((J_k(\lambda) - \lambda I) \in \mathbb{C}^{k \times k}\)

\[
J_k(\lambda) = \begin{bmatrix}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \ddots & \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \lambda \\
0 & \cdots & \cdots & 0 & \lambda
\end{bmatrix},
\quad
J_k(\lambda) - \lambda I = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 0
\end{bmatrix}
\]

\[
(J_k(\lambda) - \lambda I)^2 = \begin{bmatrix}
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & 1 & \ddots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 0
\end{bmatrix},
\quad
(J_k(\lambda) - \lambda I)^k = O.
\]
The Jordan normal form

Theorem. Let $A \in \mathbb{C}^{n \times n}$. Then A is similar to a block diagonal matrix J with Jordan blocks on its diagonal, i.e. \exists nonsingular $X \ni X^{-1}AX = J = \begin{bmatrix} J_{k_1}(\lambda_1) & O & \cdots & O \\ O & J_{k_2}(\lambda_2) & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_{k_p}(\lambda_p) \end{bmatrix}$. \hspace{1cm} (1)

The matrix J, called the **Jordan normal form** of A, is unique up to a rearrangement of its blocks. \hfill \Box

The scalars $\{\lambda_1, \ldots, \lambda_p\}$ in (1) are the eigenvalues of A. The set of eigenvalues, or **spectrum** of A, is denoted $\Lambda(A)$.

For A as above,

$$(A - \lambda_1 I)^{k_1} (A - \lambda_2 I)^{k_2} \cdots (A - \lambda_p I)^{k_p} = O \, .$$ \hspace{1cm} (2)
Vanishing polynomials

The polynomial

\[c(z) = (z - \lambda_1)^{k_1} (z - \lambda_2)^{k_2} \cdots (z - \lambda_p)^{k_p} \]

is the characteristic polynomial of \(A \). An eigenvalue \(\lambda \) may be repeated, say

\[c(z) = p(z)(z - \lambda)^{k_1} (z - \lambda)^{k_1} \cdots (z - \lambda)^{k_m} , \ p(\lambda) \neq 0 \]

The algebraic multiplicity of the eigenvalue \(\lambda \) is then

\[k_1 + k_2 + \cdots + k_m \]

and \(\max \{ k_i : i \in \overline{1,m} \} \) is the geometric multiplicity, or index of the eigenvalue \(\lambda \), denoted \(\nu(\lambda) \). The polynomial

\[m(z) = \prod_{\lambda \in \Lambda(A)} (z - \lambda)^{\nu(\lambda)} \]

is the minimal polynomial of \(A \).
Spectral inverses

Let \(A \in \mathbb{C}^{n \times n} \). Then \(X \) is an \(S\)–inverse of \(A \) if they share the property that, for every \(\lambda \in \mathbb{C} \) and every vector \(\mathbf{x} \),

\[
\begin{align*}
\{ \mathbf{x} \text{ is a } \lambda \text{–vector of } A \text{ of grade } p \} & \Leftrightarrow \{ \mathbf{x} \text{ is a } \lambda^\dagger \text{–vector of } X \text{ of grade } p \} \\
\end{align*}
\]

where \(\lambda^\dagger = 0 \) if \(\lambda = 0 \), and otherwise \(1/\lambda \).

Ex. If \(A \in \mathbb{C}^{n \times n} \) is **diagonable**,

\[
A = PJP^{-1}, \quad J = \text{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n)
\]

then

\[
X = PJ^\dagger P^{-1}, \quad J^\dagger = \text{diag} (\lambda_1^\dagger, \lambda_2^\dagger, \cdots, \lambda_n^\dagger)
\]

is an \(S\)–inverse of \(A \). It is a \(\{1, 2\}\)–inverse, and **commutes** with \(A \),

\[
AX =XA.
\]
The group inverse

Theorem. Let $A \in \mathbb{C}^{n \times n}$. Then the system

\begin{align*}
AXA &= A, \quad (1) \\
XAX &= X, \quad (2) \\
AX &=XA, \quad (5)
\end{align*}

has a solution X iff

\[\text{Ind} \ A = 1 \]

and the solution is unique. It is called the group inverse, or \{1, 2, 5\}–inverse, of A, and is denoted $A^\#$.

Proof.

\[X \in A\{1, 2\} \iff AX = P_{R(A),N(X)}, \quadXA = P_{R(X),N(A)} \]
\[\therefore X \in A\{1, 2, 5\} \iff AX = P_{R(A),N(A)} \]

\[\mathbb{C}^n = R(A) \oplus N(A) \iff \text{Ind} \ A = 1 \]
The group inverse (cont’d)

Theorem. \(A \) is range–Hermitian if, and only if, \(A# = A\dagger \).

Proof. \(A\dagger = A_{R(A),N(A)}^{(1,2)} \), \(A# = A_{R(A^*),N(A^*)}^{(1,2)} \).

Theorem (Erdélyi). Let \(A \) have index 1 and Jordan form

\[
A = PJP^{-1} ,
\]

Then

\[
A# = PJ\dagger P^{-1} .
\]

Proof. The relations (1) \(AXA = A \), (2) \(XAX = X \), and (5) \(AX = XA \), are similarity invariants. Therefore

\[
J# = P^{-1}A#P
\]

and since \(\text{Ind} \ J = 1 \),

\[
J# = J\dagger . \qed
\]
The group inverse (cont’d)

Theorem (Cline). Let a square matrix A have the FRF

$$A = CR.$$

Then A has group inverse if and only if RC is nonsingular, and

$$A^\# = C(RC)^{-2}R.$$

Ex. Let $A \in \mathbb{C}^{n \times n}$. Then A has **index 1** if and only if the **limit**

$$\lim_{\lambda \to 0} (\lambda I_n + A)^{-1} A$$

exists, in which case

$$\lim_{\lambda \to 0} (\lambda I_n + A)^{-1} A = AA^\#.$$

Proof. A full rank factorization $A = CR$ gives

$$(\lambda I_n + A)^{-1} A = C(\lambda I_r + RC)^{-1} R,$$ etc.
Properties of the group inverse

(a) If A is nonsingular, $A^\# = A^{-1}$.

(b) $A^{##} = A$.

(c) $A^{*\#} = A^{#*}$.

(d) $A^{T\#} = A^{#T}$.

(e) $(A^\ell)^\# = (A^\#)^\ell$ for every positive integer ℓ.

(f) Let A have index 1 and denote

$$A^{-j} := (A^\#)^j, \quad \forall \ j = 1, 2, \ldots,$$

$$A^0 := AA^\#.$$

Then,

$$A^\ell A^m = A^{\ell+m}, \quad \forall \ \ell, m.$$

The “powers” of A, positive, negative and zero, constitute an **Abelian group** under matrix multiplication (\(\therefore\) “group inverse”)
Lemma on λ–vectors

Lemma 1. Let x be a λ–vector of A with $\lambda \neq 0$. Then $x \in R(A^\ell)$ where ℓ is an arbitrary positive integer.

Proof. Let $(A - \lambda I)^p x = 0$ for some positive integer p, or, using the binomial expansion,

$$x = c_1 Ax + c_2 A^2 x + \cdots + c_p A^p x, \quad c_i = (-1)^{i-1} \lambda^{-i} \binom{p}{i}.$$ \hspace{1cm} (1)

$$\therefore \quad Ax = c_1 A^2 x + c_2 A^3 x + \cdots + c_p A^{p+1} x,$$

$$A^2 x = c_1 A^3 x + c_2 A^4 x + \cdots + c_p A^{p+2} x,$$

$$\cdots = \cdots$$

$$A^{\ell-1} x = c_1 A^\ell x + c_2 A^{\ell+1} x + \cdots + c_p A^{p+\ell-1} x,$$ \hspace{1cm} (2)

Successive substitutions of (2) in (1) give

$$x = A^\ell q(A) x,$$ where q is some polynomial.
Lemma on spectral inverses

Lemma 2. Let A be a square matrix and let

$$XA^{\ell+1} = A^\ell$$

for some positive integer ℓ. Then every λ–vector of A of grade p for $\lambda \neq 0$ is a λ^{-1}–vector of X of grade p.

Proof by induction on the grade p.

$p = 1$. Let $Ax = \lambda x$, $\lambda \neq 0$. Then

$$A^{\ell+1}x = \lambda^{\ell+1}x$$

$$\therefore x = \lambda^{-\ell-1}A^{\ell+1}x$$

$$\therefore Xx = \lambda^{-\ell-1}XA^{\ell+1}x = \lambda^{-1}x.$$

Assume true for $p \in 1, r$. Let x be a λ–vector of A of grade $r + 1$.

Lemma 2 (cont’d)

Then, by Lemma 1, \(x = A^\ell y \), for some \(y \).

\[
(X - \lambda^{-1} I) x = (X - \lambda^{-1} I) A^\ell y = X (A^\ell - \lambda^{-1} A^{\ell+1}) y
\]

\[
= X (I - \lambda^{-1} A) A^\ell y = -\lambda^{-1} X (A - \lambda I) x .
\]

By the induction hypothesis, \((A - \lambda I) x \) is a \(\lambda^{-1} \)-vector of \(X \) of grade \(r \).

\[
(X - \lambda^{-1} I)^r (A - \lambda I) x = 0 ,
\]

\[
z = (X - \lambda^{-1} I)^{r-1} (A - \lambda I) x \neq 0
\]

\[
Xz = \lambda^{-1} z .
\]

\[
(X - \lambda^{-1} I)^{r+1} x = -\lambda^{-1} X (X - \lambda^{-1} I)^r (A - \lambda I) x = 0 ,
\]

\[
(X - \lambda^{-1} I)^r x = -\lambda^{-1} X z = -\lambda^{-2} z \neq 0 .
\]

\[
\therefore x \text{ is a } \lambda^{-1} \text{-vector of } X \text{ of grade } r + 1 . \quad \square
\]
The group inverse is spectral

Recall: Let \(A \in \mathbb{C}^{n \times n} \). Then \(X \) is an \textbf{S–inverse} of \(A \) if they share the property that, for every \(\lambda \in \mathbb{C} \) and every vector \(x \),

\[
\begin{align*}
\{ & x \text{ is a } \lambda \text{–vector of } A \\
& \text{of grade } p \} \iff \{ & x \text{ is a } \lambda^\dagger \text{–vector of } X \\
& \text{of grade } p \}
\end{align*}
\]

where \(\lambda^\dagger = 0 \) if \(\lambda = 0 \), and otherwise \(1/\lambda \).

Theorem. Let \(A \in \mathbb{C}^{n \times n} \) have index 1. Then \(A^\# \) is the unique \textbf{S–inverse} of \(A \) in \(A\{1\} \cup A\{2\} \). If \(A \) is diagonable, \(A^\# \) is the only \textbf{S–inverse} of \(A \).

Proof. \(A^\# \) is an \textbf{S–inverse} of \(A \). Since \(X = A^\# \) satisfies \(X A^{\ell+1} = A^\ell \) with \(\ell = 1 \), it follows from Lemma 2 that \(A^\# \) satisfies the \(\implies \) part of the definition of \textbf{S–inverse} for \(\lambda \neq 0 \). Replacing \(A \) by \(A^\# \) establishes the \(\iff \) part for \(\lambda \neq 0 \), since \(A^{\#\#} = A \).

The rest of the proof omitted.
Application to finite Markov chains

A system is observed at times \(t = 0, 1, 2, \ldots \). The system has \(N \) states, denoted \(\{1, 2, \ldots, N\} \), the state at time \(t \) is denoted \(X_t \).

The system is a (finite) Markov chain (or chain) if \(\exists \) a matrix \(P = (p_{ij}) \in \mathbb{R}^{N \times N} \) such that

\[
\text{Prob}\{X_{t+1} = j \mid X_t = i\} = p_{ij}, \quad \forall \ i, j \in \overline{1, N}, \forall \ t = 0, 1, \ldots.
\]

The numbers \(p_{ij} \) are called the transition probabilities, and the matrix \(P \) is called the transition matrix.

\[
\therefore \sum_{j=1}^{N} p_{ij} = 1, \quad i \in \overline{1, N}, \quad (a)
\]

\[
p_{ij} \geq 0, \quad i, j \in \overline{1, N}. \quad (b)
\]

A square matrix \(P = [p_{ij}] \) satisfying (a),(b) is called stochastic.

Condition (a) is \(Pe = e \), i.e., \(1 \in \Lambda(P) \).
Markov chains (cont’d)

Let $p_{ij}^{(n)}$ denote the n–step transition probability

$$p_{ij}^{(n)} = \text{Prob} \{ X_{t+n} = j | X_t = i \} , \quad p_{ij}^{(0)} := \delta_{ij} .$$

The Chapman–Kolmogorov equations

$$p_{ij}^{(m+n)} = \sum_{k=1}^{N} p_{ik}^{(m)} p_{kj}^{(n)} , \quad \forall \; m, n \in \mathbb{Z}_+ . \tag{1}$$

\therefore $p_{ij}^{(n)}$ is the (i, j)–th element of P^n.

More terminology:
(a) A state i leads to state j, denoted by $i \leadsto j$, if $p_{ij}^{(n)} > 0$ for some $n \geq 1$.
(b) Two states i, j communicate, denoted by $i \leftrightarrow j$ if each state leads to the other.
(c) A set S of states is closed if $i, j \in S \implies i \leftrightarrow j$
(d) A chain is **irreducible** if its only closed set is the set of all states $1, N$, and is **reducible** otherwise.

(e) A single state forming a closed set is an **absorbing state**. A reducible chain is **absorbing** if each of its closed sets consists of a single (necessarily absorbing) state.

(f) A chain is **regular** if for some k, P^k is a positive matrix.

(g) A state i has **period** τ if $p_{ii}^{(n)} = 0$ except when $n = \tau, 2\tau, 3\tau, \ldots$. The period of i is denoted $\tau(i)$. If $\tau(i) = 1$, i is **aperiodic**.

(h) Let $f_{ij}^{(n)} = $ probability that starting from i, state j is reached for 1st time at step n, and let

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} \quad \text{probability that } j \text{ eventually reached from } i,$$

$$\mu_{ij} = \sum_{n=1}^{\infty} n f_{ij}^{(n)} \quad \text{the mean 1st passage time from } i \text{ to } j.$$
Terminology (cont’d)

(h) $\mu_{kk} := \sum_{n=1}^{\infty} n f_{kk}^{(n)}$ is the mean return time of state k.

(i) A state i is recurrent if $f_{ii} = 1$, and is transient otherwise. A chain is recurrent if all its states are recurrent.

(j) If i is recurrent and $\mu_{ii} = \infty$, i is called a null state. All states in a closed set are of the same type.

(k) A state is ergodic if recurrent and aperiodic, but not a null state. If a chain is irreducible, all its states have the same period. An irreducible aperiodic chain is called ergodic.

Theorem (Chung). For any states i, j of an irreducible recurrent chain

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} p_{ij}^{(k)} = \frac{1}{\mu_{jj}}.$$ \hspace{1cm} (1)

Proof. Both sides of (1) give the expected number of returns to state j in unit time.
Stationary probabilities

The probabilities \(\{\pi_1, \pi_2, \ldots, \pi_N\} \) are stationary if

\[
\pi_k = \sum_{i=1}^{N} p_{ik} \pi_i , \quad k \in \{1, N\},
\]

or, in terms of vector of stationary probabilities,

\[
P^T \pi = \pi .
\]

\(\pi \) is called a stationary distribution or steady state. In an irreducible recurrent chain, the stationary distribution is simply,

\[
\pi_k = \frac{1}{\mu_{kk}} , \quad k \in \{1, N\}.
\]

If a chain is ergodic, the system converges to its stationary distribution from any initial distribution.

In terms of \(P \), every row of \(P^n \) converges to \(\pi^T \).
Summary for ergodic chains

Theorem (Feller). Let \(P \in \mathbb{R}^{N \times N} \) be the transition matrix of an ergodic chain. Then:

(a) \(\forall j, k \in 1, N \) the following limit exists, independent of \(j \),

\[
\lim_{n \to \infty} p_{jk}^{(n)} = \pi_k > 0 \quad (1)
\]

(b) \(\pi_k = \frac{1}{\mu_{kk}} \)

(c) The numbers \(\{\pi_k : k \in 1, N\} \) are probabilities,

\[
\pi_k \geq 0 , \sum_{k=1}^{N} \pi_k = 1 , \quad (2)
\]

and are a stationary distribution of the chain:

\[
\pi_k = \sum_{i=1}^{N} p_{ik} \pi_i , \quad k \in 1, N . \quad (3)
\]

The distribution \(\{\pi_k\} \) is uniquely determined by (2) and (3). \(\square \)
Solution using the group inverse

Theorem (Meyer). Let \(P \) be the transition matrix of a **finite** Markov chain, and let \(Q = I - P \).

Then \(Q \) has a **group inverse**, and:

\[
I - QQ^\# = \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} P^k ,
\]

(1)

\[
= \lim_{n \to \infty} (\alpha I + (1 - \alpha)P)^n , \text{ for any } 0 < \alpha < 1 ,
\]

(2)

and if the chain is **regular**, or **absorbing**,

\[
I - QQ^\# = \lim_{n \to \infty} P^n .
\]

(3)

For proofs and other details see original work.