SIAM J. APPL. MATH.
Vol. 31, No. 3, November 1976

THE DRAZIN INVERSE OF AN INFINITE MATRIX*
STEPHEN L. CAMPBELLY

Abstract. Let A =[qg;;], 0=i <00, 0=j <00. Then A is called a denumerably infinite matrix. A
way to define a Drazin inverse for A is presented. The application of this definition to denumerable
Markov chains, infinite linear systems of differential equations, and linear operators on Banach spaces
is discussed.

1. Introduction. It has recently been shown that the Drazin inverse [3] of a
square matrix has several important applications. In[8], it is used to study Markov
chains. In [1], it is used to give closed forms for solutions of systems of linear
differential equations with singular coefficient matrices.

The definition of a Drazin inverse usually given depends on the index of a
matrix. Thus the only known definitions of Drazin inverses in infinite-dimensional
spaces [2] are restricted to rather special classes of operators.

This paper will discuss how to define a Drazin inverse for infinite matrices.
The matrices are not viewed as linear transformations on some particular linear
space.

We shall first review the basic facts about infinite matrices. Then we shall
show how to define the inverses and develop some basic information about them.
Then we will show that our theory reduces to the usual theory when the matrices
are finite. This is necessary since our definitions do not look like the standard ones.
Finally, we discuss applications of our theory to denumerable Markov chains,
infinite systems of linear differential equations, and operators without finite index.

2. Infinite matrices. Unless stated otherwise, all matrices are infinite mat-
rices with finite entries from the field of complex numbers. If T is a matrix, we shall
writeitas T=[T;],0=i<00,0=j<oo.If T; =0 for every i, j (in particular, T} is
real), then we write T=0. |T] is defined by |T}; =|T}|. If |T;;| <co for all i, j, we
write | T| <oo. I denotes the identity matrix, E a matrix with every entry equal to
one, and e a column matrix of ones. C* is the conjugate transpose of the matrix C.

If S, is a sequence of matrices, then

limS,=C

is taken to mean lim, .o (S,); = G, 0=i <00, 0=j <00. In particular, this applies
if S, =Y, _, A, for a sequence of matrices {A,}.

Matrix multiplication and addition are defined in the usual way. A product or
sum is well-defined if one does not encounter any divergent series (series may
conditionally converge to +0c0 or —o0) or sums of the form c0—00. By convention,
0 - c0=0. We define the following classes of matrices:

(FR) = {all matrices such that each row has a finite number of nonzero entries},

(FC) ={all matrices such that each column

has a finite number of nonzero entries},
(FRC)=(FR)N (FC),
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and note without proof that:
ProposiTiON 1. If A, B are matrices, then
(i) Ae(FR), Be(FR)=> AB e (FR), and

(ii) Ae(FC), Be(FC)=>ABe(FC).

Most of the algebraic manipulations one does with finite matrices also work
for infinite matrices with one crucial exception. Matrix multiplication is no longer
associative. A standard example [7, p. 5] is e*(Ae) =0, (e*A)e =1, where A is
defined to be 1 on the diagonal, —1 on the superdiagonal and zero elsewhere.
Note that A € (FRC). We shall give an example of a Markov chain with transition
matrix P which has I — P a scalar multiple of this A.

The uniqueness of most types of inverses depends upon associativity. Suffi-
cient conditions for associativity are known. The following are taken from [7].

PROPOSITION 2. Let A, B, C be matrices which possibly have infinite entries.
Then A(BC)=(AB)C if any one of the following conditions is met:

i) A=0,B=0, and C=0,
(ii) |A||B||C|<co,

(iii) A € (FR) and A(BC), (AB)C are well-defined,

(iv) Ce(FC) and A(BC), (AB)C are well-defined,

(v) B has finitely many nonzero entries and A(BC), (AB)C are well-defined.

A useful corollary [7, p. 7] is:

CoroLLARY 1. If A=0, B=0, C=0, D=0, and either

(i) |ABD|<o, |AB|<c and |BD|<,
or

(ii) |ACD|<0, |AC|<o and |CD|<,
then [A(B—-C)]D = A[(B—-C)D].

We shall be most interested in Corollary 1 when B =I.

3. The Drazin and group inverses
DEFINITION 1. A matrix X, | X| <00, is a C-(2) inverse of A, |A| <00, if
(i) XA =AX, and

(i) X(AX)=(XA)X=A.

DEFINITION 2. A matrix X, [X]|<o0,isa C-(1, 2) inverse of A, |A| <0, if X is
a C-(2) inverse of A and

(i) A(XA)=(AX)A =A.

DEeFiniTION 3. If X, Y are C-(2) inverses for A and

1) X(AY)=(XA)Y=X,
and
() Y(AX)=(YA)X =X,

then we write X< Y.

Itis important to note that conditions (1) and (2) are independent. Intuitively,
(2) implies that the “range” of X is in the “range” of Y while (1) says that the
“nullspace” of X contains the nullspace of Y.
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Example 1. Let

ot 0] _[1 0] _[1 1]
A—-I—[O U X=ly o] ™ Y=, o)

Then X, Y are C-(2) inverses for A and (2) holds but not (1).

If X< Y for all C-(2) inverses X, we call Y maximal.

DEFINITION 4. If there exists a unique maximal (in the ordering of Definition
3) C-(2) inverse, we call it the Drazin inverse of A and denote it A”. If A” exists
andisa C-(1, 2) inverse, it is also called the group inverse of A and denoted A *,

Note that X =01is a C-(2) inverse for any A and 0 < Y for any C-(2) inverse
Y of A.

ProrosiTION3. If XS Y, Y Z, where X, Y, Z are C-(2) inverses for A, and
XAYAZ and ZAYAX are associative products, then X < Z.

Proof. Let X, Y, Z be C-(2) inverses for A such that X< Y and Yc Z.
Assume the products XAYAZ and ZAYAX are associative. Then

(XA)Z=X(AZ)=[X(AY)I(AZ)=X(A(YAZ))= X(AY)=X.

Similarly Z(AX) = X.

ProrposITION 4. If X, Y are C-(2) inverses for A suchthat X < Yand Y < X,
then X =Y.

Proof. Suppose X, Y are C-(2) inverses for A such that X< Y and Y X.
Then X=XAY =Y.

COROLLARY 2. If A has a maximal C-(2) inverse, then it is unique so that AP
exists.

PROPOSITION 5. Suppose that X is a C-(1, 2) inverse of A and Y is a C-(2)
inverse of A. If X(AY) and Y(AX) are associative products, and A € (FCR), then
YeX

Proof. Suppose X, Y are as described. Then

X(AY)=(XAX)(AY)=(X’A)(AY)
=(X’A)(YA)=X[A(YA)]=X?A=X.
Similarly,
(YA)X = (YA)(XAX)=(AY)(XAX) = (AY)(AX?)
=[(AV)AIX’=AX*=X

as desired.

Note that without some assumptions on A, Proposition 5 is not valid since
inverses are not always unique, but they are always C-(1, 2) inverses.

PrOPOSITION 6. Suppose that X, A € (FR) and X is a C-(1, 2) inverse of A.
Then X is the unique C-(1, 2) inverse of A.

Since (FR) is associative and every C-(1, 2) inverse is a pseudo inverse in the
terminology of [3], the proof of Proposition 6 is almost identical to the first half of
the proof of Theorem 1 in [3]. It will be omitted.

A similar result holds if X, A € (FC).

The next example will be referred to several times in what follows.
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Example 2. Let

21200
03 3 0
P= L , A=I-P
0 0 3 32 O
0 00
and

2 2 2 2 2 ]
022 22

X=]0 02 2 2
00022

Then AX=XA=1. Since Pe(FCR) and X e (FC), we have X=(I—P)* by
Proposition 6.

Note that in the above case, A has an inverse and yet Ae =(0. When working
with infinite matrices, the concept of an inverse is not as directly related to that of
nullspaces and ranges as is the case with finite matrices. For this reason, our
development is more algebraic.

Since (XY)* = Y*X* is valid for infinite matrices, we have that A” exists if
and only if (A*)” exists and (A”)*=(A*)".

Example 3. LetSbedeﬁnedbySﬁ,—l ifj=i+1,and S; =0if j#i+1. The
only C-(2) inverse for S is 0 so that SP =0. Hence (S*)° = 0

If S is thought of as acting on /%, then S is the “unilateral” shift. In fact, S is
an isometry. Now S, S* have the property that viewed as operators on [°,

range (S") 2range (S"*") for every n,

1:)8

ange ($™)={0},

while

range (S*”) =range (S***")=1*> foreveryn,
N range (S*") = 1>
n=0

Thus index (S), index (S*) depending on your definition would probably be zero
or infinity.

Notice that if X is a C-(2) or C-(1, 2) inverse for some A, then X* is a C-(2)
or C-(1, 2) inverse for A*. On the other hand, if X3, X, are C-(2) inverses for A
and X CXz, then X* CX2

PROPOSITION 7. If A =A* and A exists, then (AP)*=A".

Proof. If A = A* then AD AD are C-(2) inverses of A and AP c AP by
the definition of AP. Thus A? < AP" and AP = AP
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While the preceding discussion is helpful in understanding the basic idea
behind our definition of a Drazin inverse, it does not provide a means of showing
that a given matrix has a Drazin inverse. We shall now develop one such criteria.
First we need the following generalization of [7, Prop. I-63]. Its proof is the same
as that of Proposition I-63 and will be omitted.

PrOPOSITION 8. Let {A,} be a sequence of matrices. If there exists a matrix C
with finite entries such that |A, | < C for all n, then there is a convergent subsequence

{A} of {An}.

Given a matrix A, let

Ai O], whereA=[Ai B;

3 ~i=[
3 A 0 0 C D

], A; ai X i matrix.

Then it is easy to see that

- |AY 0}
D__ i
A,._[O |

THEOREM 1. Suppose that A € (FCR). Let A; be as in (3). If there exists a
subsequence Ak which converges, then lim, Ak isa C-(2) inverse of A. If there
exists a subsequence A, which has index 1 and A, converges, then lim AY isa
C-(1, 2) inverse of A.

Proof. Suppose that Q =lim, AP exists. Now AfA/if=/if. Since A€
(FCR), we have

4) Q=lim AP =1im APAA? = QAQ.
k k

On the other hand,

. ., [A? 0o [A B] [Ak Bk}[AE 0}
D,y _ A ZAD_| Ok k Di|_
AkA—AAL I:O O:I Cc D G DL 0 0
_[ 0 AfB,{I
l-cA? 0 |

Thus
lim (APA—-AAP)=0
k

since (AYA—AAQ),; =0if i,j=k.
Hence

and Q is a C-(2) inverse as desired. Now suppose that Q = limy A% Again (4) and
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(5) hold. Since

s [Ax 0]
AA"A_[O 0
and
. A O]_
“,{“[o 0ol =4
we have
AQA=A

and Q is a C-(1, 2) inverse as desired.

497

Note that it is quite possible to have the index of A; depend on i.
Example 4. Let A; =1 if |i—j|=1. Then A, is invertible if and only if i is

even. Let m = 2i. Then

Am-—ZE R
o171 |-
- [0 el s
o oJ  _____ L
L o0 ! 0

-

0 110 -1!0 1
1 010 010 0
"0 0 o0 1 E 0 -1
-1 0 1 070 0
o= 0 0 0o 0 o0 1
1 0 -1 0 1 0
e
-1

R, S matrices.

PROPOSITION 9. Suppose that A = A™ and let §; be the modulus of the smallest
nonzero eigenvalue of A,. If {87} is bounded by m, then

~mE=AP=mE foralli.

Proof. Assume that A =A%*. Let p denote the spectral radius. We may
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assume that p(A;)>0. But p(A?)=1/8; and
max [A7], =p(AD), 0=k, I=i
Kl

Proposition 9 combined with Theorem 1 provides a means of not only
proving the existence of a group inverse for a self-adjoint matrix but also
calculating a given entry.

4. The finite-dimensional case. Let A be a n X n matrix of complex num-
bers. The Drazin inverse of A is usually defined as the unique matrix X such that

6) AX=XA,

7 XAX =X,

and

8) XA*"'= A¥  where k =inf {m: rank (A™"") =rank (A™)}.

k is called the index of A. In this section, we shall use A” to denote the inverse
defined by (6)(8) rather than by Definition 4. Note that, by definition, A” is a
C-(2) inverse of A. If k=1 or 0, then A" is a C-(1, 2) inverse and hence is the
group inverse. We shall show that our definition of the Drazin inverse is equiva-
lent to the one given in (6)-(8).

Given an n X n matrix A, there exists an invertible matrix T such that

wre[] 1)

where J is invertible and N is nilpotent of index k. Suppose that B commutes with
A. Let

(10) BT = [0 B
Then AB = BA implies that

(11) JB11 =B/,
(12) JBy;=B;N,
(13) NB;; = By,J,

and

(14) NBj=Bj,N.

From (12) we get
J*Bi1,=B1;N*=0 andhence B;,=0.
Similarly (13) gives that
By J*=N“B;;=0 sothat B, =0.
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Now if B is a (2)-inverse for A, then we have
(15) B2,NB;; = By;.
Using (14) and (15) we get
N*"'Byy;= BN By, =0.
Hence
ByuN*"'By=N*7B,,=0.
Continuing in this manner gives B,, =0. Hence B in (10) is of the form

B),; 0
16 TBT '= [ . ]
(16) 0 0
THEOREM 2. The two definitions of the Drazin inverse are equivalent forn X n
matrices.
Proof. Given A write as in (9). Let B be any C-(2) inverse. Then B can be
written as in (16). But

Jt o]
TADT1=[ )
0 0]
Thus
D 1_ I O-
TAA™T _[O OJ’

and BAA” = AAB = B so that B< A”. Thus A” is a maximal C-(2) inverse in
the ordering of Definition 3. From Proposition 4 we have that it is the unique
maximal one.

5. Markov chains. Let P =0 be such that Pe =e. Then P is the transition
matrix of a Markov chain. The following information is from [7] and is included
for completeness. Let N =Z;°=O P*. Then N;; is the average number of times in
state j, starting in state i. Of course, N =0 but not necessarily N < 0. Following[7]
we say that the two states i, j are related i ~ if it is possible to go from i to j. Thus
i~j if and only if (P");>0 for some n. States are classified as recurrent or
transient. A state is transient if and only if N; <0o.If j is transient, then N;; < oo for
all i. One has, in fact, that with probability one, one is in a transient state only a
finite number of times.

A Markov chain is recurrent if its states compromise a single equivalence
class and one (hence all) state in the equivalence class is recurrent. A chain is
transient if all of its recurrent states are absorbing. Any Markov chain can be
viewed as a transient chain whose states are equivalence classes of recurrent
states.

If P is a transient chain, then listing the absorbing states first one may write

(17) P=<I£ g)
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If one views P as a fixed matrix, then (17) is unitarily equivalent to the original P
by way of a permutation. To avoid unnecessary notation we assume P is in the
form (17). The possibility that P = Q is not omitted. If

(18) M=7Y O~
k=0

we have M<o and lime Q=0 [7, p. 107]. Furthermore, M(I—Q)=
(I-QO)M=1I, OM=MQ, [7, p. 108]. Clearly N = [O)O(I 181], X a matrix.

In the finite-dimensional chains, if the chain is to be transitive it must have an
absorbing state. This is not true in the infinite-dimensional case. The matrix P of
Example 2 defines a transient chain. In this section, A is always I — P.

Prorosition 10. If P is a transitive Markov chain of the form (17), Pe

- # 0
(FCR), and M € (FC), then A” = (—MZR M

In [7, p. 109] it is shown that if P is a transient chain, then lim, P* =
( MIR 8). Thus as in [8, Thm. 2.2], we have lim, P"=(I-A%A). If A is
invertible, this just says, as observed earlier, that lim, P*=0.

Note that A* may fail to exist if Mg (FC). The obvious question then is which
type of transient chains have M € (FC). Using (18) and the fact that M;; = H;N;;
where H is the probability of eventually going from i to j for transitive nonabsorb-
ing states i, j, we see that M; =0 for i =k, if and only if there are only a finite
number of states which can lead to i since Nj; >0. Note that Example 2 is of that
form. Not all transitive chains, of course, look like this. A simple example is given
in [7, p. 83]. On p. 159 of [7] is an example of a transient chain such that
Pe (FCR), Mg (FC).

We see then, that for transitive chains with associativity of the matrices
involved, A* gives the results of [8] with the added result that if I — P is invertible,
then N=A”. Note that Proposition 5-18 of [7] dealing with the infinite drun-
kard’s walk is a special case of our Theorem 1.

If P is recurrent, then

). In particular, A exists.

where L satisfies LP=L = PL = L*[7, p. 130]. If L = 0, the chain is called null. If
L #0, the chain is called ergodic. For finite-dimensional recurrent chains L =
I-A”A [8] and A is never invertible [8]. Thus all finite recurrent chains are
ergodic.

If P is recurrent, then there exists a row vector a such that aP=a, a >0.
Furthermore, P is ergodic if and only if ae <00, and « is unique up to a constant
multiple [7]. If P is a null chain, then lim, P* =0 [7, p. 154].

If X is an inverse of A, then X+ ea is another inverse for A since Aea is
associative (|A |ea = |ea|+|Pea| < ) and eaA is associative. Thus A”, as we have
defined it will not exist for null chains. However, L = I — XA is still true for any
inverse of A.
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Suppose, on the other hand, that P is ergodic and that A” exists. Then
(I-A"A)A=00r(I-A*A)=(I-A%A)P. Since a is summable, assume ae =
1. Thus each row of (I — A* A) must be a multiple of a so that (I —A*A) = ka, k a
column matrix. Now L =ea [7, p. 133]. But then I—A*A)L =L since the
product is associative and AL = 0. Thus (ka)(ea) = ea. But (ka)(ea) = (ae)ka =
ka. Hence k =e and I—A™A =L just as in the finite-dimensional case.

6. Differential equations. In extending the results of [1] to infinite systems,
there is a major difficulty. Consider the infinite system of differential equations

(19) Ai+Bx=f.

For simplicity, we shall assume A, B € (FCR). Such equations occur, for example,
in [9]. In [1], it was shown that in the finite-dimensional case, (19) has unique
solutions for consistent initial conditions if and only if (A +AB) is invertible for
some scalar A. A closed form for the solutions was also given in [1]. That the same
does not hold for (19) in the infinite-dimensional case is shown by the next
example.

Example 5. Let B= —1I and A be the S* of Example 3. Then (A +B) is
invertible and the inverse is unique. In fact, [(A +B)'1],~,~ =(—1)if i =j and zero
otherwise. Let f = 0. Then (19) becomes S*x = x. Then define x,, by nS*x,, = x,,_;.
Since $* is onto the vector space for all column matrices and is not one-to-one, the
choice for x,, is not unique. Let x(¢) = Z::O t"x,. By taking each x, € [” such that
[lx. ]| = M for some fixed M, x(¢) will be a well-defined column matrix whose entries
are differentiable functions of ¢ on (— M, M). The choice of x, is not unique. Since
(8*)P =0, the only solution produced from the formulas of [1]is x =0.

We shall show that provided A is self-adjoint, one gets a reasonably complete
extension of the results of [1]. First we need the following result.

ProrosiTionN 11. If A7 exists, AB = BA, and products involving B, A% A
are associative, then A”B=BA”.

The proof of Proposition 11 is almost identical to the second half of the proof
of Theorem 1 in [3] and will be omitted.

We can prove the following infinite-dimensional version of [1, Thm. 3]. The
exponential is to be interpreted as a formal power series.

THEOREM 3. Suppose that A” exists, AB=BA, and all finite products
involving A, A*, B are associative. Then

(20) Y=e*"?A%A

is formally a solution of Ax +Bx =0.
Proof. Let x;=A%Ax and x,=(—A*A)x. Then (19) becomes

(21) AXx1+Bx;+Bx,=0.

Multiply through first by A* A and then by (I— AA™). Then (21) is equivalent to
the pair of equations:

(22) AX'?1+BX1=O
and
23) Bx,=0.
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But e **®'A* A is a solution of (22) while x, =0 is a solution of (23).
If we knew that A” and B” both existed, then we could argue that

Y=e*"PA*A+(I-A"A)I-B*B)f
is the ““general” solution of (19), f an “arbitrary” formal series.

7. Operators. Our results suggest a way to define the Drazin inverse of a
linear transformation. For convenience we shall assume that A is a bounded linear
operator on the complex Banach space B. If A has a finite index, then the Drazin
inverse may be defined pretty much as in the finite-dimensional case (see Carradus
[2D).

If one wishes to develop a more general theory, to cover say compact and
normal operators, then one would want to include the possibility that A” be
unbounded. We shall not develop such a theory here but rather discuss some of
the difficulties involved.

To follow the approach given here, a class of operators §(A) should be
defined, an ordering < introduced, and the maximal elements studied. The major
difficulty is in deciding which X to putin §(A). Let 2(X) be the domain of X. Is it
best to have

AX=XA,
or
AX=XA on 9(X)?

Similarly, should X be required to be closed or not? To show how it can all make a
difference, let us consider two definitions of 8(A). The symbols N, & denote
nullspaces and ranges respectively.

DEFINITION 5. Let §1(A) be the set of all X such that

(24) P(X) isdense,

(25) AX=XA on 9(X),

(26) XAX =X,

and

(27) UNA)SD(X), NRA")SD(X).

DEFINITION 6. Let §,(A) be the set of all X such that X satisfies (24), (25),
(26), (27), and X is closed. That is, the graph of X is closed.

Example 6. Take B=1° and A=S* where S*{ao, ai,as, - }=
{a1, ay, as, -+ +}. Then

NAY=fan)el*:a, =0ifn>k}.

Thus U, N(A¥) is dense in [°. Using (25), (26), and (27) we can show that
U /(A*) = ¥ (X). But any closed operator has a closed nullspace. Thus §,(A) =
{0}. To see that 8;(A) # {0}, let ./ be a finite-dimensional subspace of /?, invariant
under S$*, such that no vector in # has only a finite number of nonzero
components. Let S*|# denote the restriction of S* to .. Then define X as
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follows. Let @(X) =+ U N(A¥). Note that 4~ U, N(A¥)={0}. Set X|.4# =
(S*Mt)_1 and X|Ux N(A*)=0. Extend linearly to 2(X). Then X#0 and X e
81(A).

For the reader unfamiliar with $*, the existence of the subspace . may not
be obvious. That it exists can be demonstrated as follows. Identify I* with H*, the
functions analytic in the open disc whose Taylor series have square summable
coefficients. Let b be a finite Blaschke product such that 5(0) # 0. (b is an analytic
function of modulus one on the circle with a finite number of zeros inside.) Let
M =H*N (bH" . Then A is invariant under S$*, and S*|# is invertible since
b(0)#0 [4] or [5].

We shall conclude by discussing why we included (27) in our Definition 5. Let
Ni-o R(A¥) be denoted by %(A%).

How one defines A” will depend on how one wishes to use it. Let’s briefly
examine why the Drazin inverse is useful in the finite-dimensional case. Consider
the difference equation:

(28) AXx,+1=x,, Asingular, n=0.

As pointed out in [1], one does not want to just solve (34) by x,.1=A x,, A
some (1)-inverse, since {(A~)"xo} may not be a solution of (28). But if {x,} is a
solution of (28), then

_ — A2 _ Ak
Xn =AXp11=AXp12= ** TA Xprre

Note that A maps R(A%) onto itself. If {x,} is a solution of (28), then
x, € R(A®) for every n. In the finite-dimensional case, R(A”)= R(AAP) and
U N (A*)=N(AAP)=R(I - AAP), and the unique solution of (28) is x, =
(AP)"xo=(A")"x,. Thus if A” is to solve (28) we would need &(A~) < D(X).

Whether or not U, N(A*) < @(X) is necessary is a more difficult question.
Its inclusion depends on whether or not the unicity of A” or the solving of (28) by
using different X € §(A) is the more desirable. If unicity is not important in the
problem to be worked on, then §(A ) could be used for (28) much like the set of all
(1)-inverses is used to solve finite-dimensional linear systems of equations.
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