Newton, etc.

 

1. A. B-I, A Modified Newton-Raphson Method for the Solution of Systems of Equations, Israel J. Math. 3(1965), 94-98

2. A. B-I, A Newton-Raphson Method for the Solution of Systems of Equations, J. Math. Anal. Appl. 15(1966), 243-252

3. A. B-I, Newton's Method with Modified Functions, Contemp. Math. 204(1997), 39-50

4. L. Yau and A. B-I, The Newton and Halley Methods for Complex Roots, Amer. Math. Monthly 105(1998), 806-818

5. Y. Levin and A. B-I, Directional Newton Methods in n Variables, Math. of Computation 71(2002), 237-250

6. Y. Levin and A. B-I, A Newton Method for Systems of m Equations in n Variables, Nonlinear Analysis 47 (2001), 1961-1971

7. Y. Levin and A. B-I, Directional Halley and Quasi-Halley Methods in n Variables, , pp. 345-365 in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (D. Butnariu, Y. Censor and S. Reich, Editors), Elsevier Science, Amsterdam, 2001.

8. Y. Levin, M. Nediak and A. B-I, Direct Approach to Calculus of Variations via Newton-Raphson Method, J. of Comput. & Appl. Math. 139(2001), 197-213

9. Y. Levin and A. B-I, The Newton Bracketing Method for Convex Minimization, Comput. Optimiz. and Appl. 21(2002), 213-229

10. Y. Levin and A. B-I, An Inverse-Free Directional Newton Method for Solving Systems of Nonlinear Equations, pp 1447-1457 in Progress in Analysis, Vol. 2 (H.G.W. Begehr, R.P. Gilbert and M.-W. Wong, Editors), World Scientific, Singapore, 2003, ISBN 981-238-967-9

11. Y. Levin and A. B-I, A Heuristic Method for Large-Scale Multi-Facility Location Problems, Computers and Oper. Res. 31(2004), 257-272

12. A. B-I and Y. Levin, The Newton Bracketing Method for the Minimization of Convex Functions subject to Affine Constraints, Discrete Applied Mathematics 156(2008), 1977-1987

13. A. B-I, G. Levin, Y. Levin and B. Rozin, Approximate Methods for Convex Minimization Problems with Series-Parallel Structure, European Journal of Operations Research 189(2008), 841-855

14. A. B-I and Y. Levin, The Newton Bracketing Method for Convex Minimization: Convergence Analysis, Chapter 4, pp. 49-63 in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (H.H. Bauschke, R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke and H. Wolkowicz, Editors), Springer, 2011

15. A. B-I, An Inverse Newton Transform, Contemporary Mathematics 568(2012), 27-40

 

Description: C:\Users\Adi\Desktop\WEBPAGE\images\isaac-newton.jpg

 







Return