
Contemporary Mathematics 204(1997), 39–50

NEWTON’S METHOD WITH MODIFIED FUNCTIONS

ADI BEN-ISRAEL

Abstract. Applying the Newton method to a modified function

f(x) (x− θ)α where θ, α are suitable parameters ,

results in the iteration xk+1 := xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk) + αf(xk)
,

whose convergence is related to the convexity of f relative to the family of functions

Fθ,α :=

{
a + b (x− θ)

(x− θ)α
: a, b ∈ IR

}
We study useful selections of the parameters α and θ, as well as the case where these are updated at each iteration.

1. Introduction

The Newton method

(1) xk+1 := xk −
f(xk)
f ′(xk)

, k = 0, 1, 2, . . .

may perform better, near a zero ζ of f , if applied to a modified function f̂ with the same zero. Examples:

method iteration
obtained by
applying (1) to:

A 2nd order method for zeros
with multiplicity m (known)
[10, Chapter 8]

xk+1 := xk −m
f(xk)
f ′(xk)

f̂(x) := f1/m(x)

A 2nd order method for zeros
of any multiplicity
[15, Example 2–5]

xk+1 := xk −
f(xk)

f ′(xk)− f ′′(xk)
f ′(xk)

f(xk)
f̂(x) :=

f(x)
f ′(x)

The Halley method:
A 3rd order method ([1], [15],
[13] and references therein)

xk+1 := xk −
f(xk)

f ′(xk)− f ′′(xk)
2f ′(xk)

f(xk)
f̂(x) :=

f(x)√
f ′(x)

The above modified functions are special cases of

(2) f̂(x) := e−
∫

a(x) dx f(x) , with a suitable integrand a(x) ,

for which the Newton method gives

(3) xk+1 := xk −
f(xk)

f ′(xk)− a(xk)f(xk)
, k = 0, 1, 2, . . .

The order of (3) is determined by the first nonzero (continuous) derivative of its iteration function

Φ(3)(x) := x− f(x)
f ′(x)− a(x)f(x)

at the fixed point ζ = Φ(3)(ζ), see e.g. [15, Theorem 2.2]. Differentiating Φ(3) at ζ and substituting f(ζ) = 0 we get

Φ′(3)(ζ) = 0 , Φ′′(3)(ζ) =
f ′′(ζ)− 2 a(ζ) f ′(ζ)

f ′(ζ)
,
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showing that in general the order is 2 (as expected, since (3) is a Newton method). The order is 3 for the selection

(4) a(x) :=
f ′′(x)
2 f ′(x)

which renders Φ′′(3)(ζ) = 0. Indeed, substituting (4) in (3) we get the Halley method

(5) xk+1 := xk −
f(xk)

f ′(xk)− f ′′(xk)
2f ′(xk)

f(xk)
, k = 0, 1, 2, . . .

Sometimes it is advantageous to modify f as a composition, (or transformation of variables),

f̂(x) := f(g(x)) , see e.g. [9] ,

rather than the multiplicative form (2).
In this paper we consider a special case of (2)

(6) f̂(x) := (x− θ)α f(x) ,with suitable parameters θ and α ,

corresponding to the selection of a(x) as

(7) a(x) := − α

x− θ
.

Applying the Newton method to (6) (i.e. substituting (7) in (3)), we get

(8) xk+1 := xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk) + αf(xk)
, k = 0, 1, 2, . . .

The parameter θ may be adjusted in each iteration, in particular,

(9) θk := xk−1 , the last iterate,

in which case (8) becomes

(10) xk+1 := xk −
(xk − xk−1) f(xk)

(xk − xk−1) f ′(xk) + αf(xk)
, k = 0, 1, 2, . . .

A geometric interpretation of (8) is given in Theorem 1. First we require the following notation: two differentiable
functions f and g are called tangent at a point xk if f(xk) = g(xk) and f ′(xk) = g′(xk), a fact denoted by f

xk∼ g.
Clearly

(11) f(x) xk∼ g(x) if and only if (f(x) h(x)) xk∼ (g(x) h(x))

whenever h is differentiable, and h(xk) 6= 0.
Given θ and α, consider the function

(12) F (x | θ, α) :=
a + b (x− θ)

(x− θ)α

which is tangent to f at xk (the coefficients a and b are determined by the tangency f(x) xk∼ F (x | θ, α)). Note that
x = θ is a zero of F (x | θ, α) if α < 0 , and is a pole if α > 0.

If θ 6= xk it follows from (11) that

(13) f(x) xk∼ a + b (x− θ)
(x− θ)α

if and only if (x− θ)α f(x) xk∼ a + b (x− θ) .

The RHS of (13) states that the affine function

(14) `(x) = a + b (x− θ)

is tangent to (x− θ)α f(x) at xk. Moreover, the function (12) and the affine function (14) have a common zero at

(15) x = θ − a

b

provided b is nonzero. We summarize:
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Theorem 1. Let f be differentiable, let θ, α be fixed, and let xk 6= θ be a point where (xk − θ) f ′(xk) + αf(xk) 6= 0.
The function

F (x | θ, α) :=
a + b (x− θ)

(x− θ)α
(12)

tangent to f at xk has a zero at

xk+1 = xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk) + αf(xk)
(8)

which is the zero of the affine function
`(x) = a + b (x− θ) (14)

tangent at xk to
f̂(x) := (x− θ)α f(x) . (6)

Theorem 1 states that the iteration (8) is equivalent to finding the zero of the function (12) which is tangent to
f(x) at xk .

The iterative method (8) uses the function (12) to interpolate f and f ′ at the single point xk, thereby fixing the
two free coefficients a and b (the parameters α and θ are fixed at the outset). In comparison, the rational interpolation

methods (see e.g. [8], [7]) use a rational function, such as (x − a)/
m∑

j=0

bj xj to interpolate f (or f and some of

its derivatives) in as many points as needed to determine the coefficients. This was generalized to nonpolynomial
interpolation in [2]. However, the iterative methods (8) and (10) are not covered by the theory in [8], [7] or [2],
even if α is a positive integer (making (12) rational). In particular, the iterative method (10) uses information in an
asymmetric way: f and f ′ at xk, nothing at xk−1 (except xk−1 itself).
Outline of this paper:

Four “bad” examples, presenting situations where Newton method is inadequate, are given in § 2.
The iterative method (8) is related to a notion of generalized convexity discussed in § 3. Let Fθ,α be the family

of functions (12), and let f be strictly Fθ,α–convex. Then Theorem 2 shows the convergence of (8) to be monotone.
Useful selections of the parameters θ and α are indicated in § 4.
In § 5 we discuss the case where the parameters θ and α are updated in each iteration, in particular a quasi–Halley

method (38) with order 2.41, using at each iteration the current values of f and f ′, and a previous (available) value
of f ′.

In § 6, the Newton and Halley steps, emanating from the same point, are compared in Theorem 4. Similarly, the
Halley and quasi–Halley steps are compared in Theorem 5.

2. Bad examples for the Newton method

Examples 1–4 below illustrate what can go wrong with the Newton method. First we recall typical conditions for
the convergence of (1), written as xk+1 − xk = −uk where

(16) uk :=
f(xk)
f ′(xk)

, k = 0, 1, 2, . . .

is the kth Newton step. Let x0 be an initial point, and let J0 be the interval with endpoints x0 and x0 − 2 u0 , in
which f is assumed twice–differentiable. The conditions

sup
x∈J0

|f ′′(x)| = M(17a)

|f ′(x0)| ≥ 2 |u0|M(17b)
are sufficient for the existence of a unique zero ζ of f in J0, and for the convergence of (1) to that solution, see [10,
Theorem 7.1]. If ζ is a simple root, the convergence is quadratic

(18) |xk+1 − ζ| ≤
∣∣∣∣ f ′′(ζ)
2 f ′(ζ)

∣∣∣∣ |xk − ζ|2 .

Also, the conditions (17) hold throughout the iterations:

|f ′′(xk)| ≤ M(19a)
|f ′(xk)| ≥ 2 |uk|M , k = 1, 2, . . .(19b)

Example 1 (Repulsion). The function

(20) f1(x) := x1/3
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has a unique zero at 0. The Newton method diverges for any nonzero x0: the iteration (1) gives xk+1 =
−2 xk .

Example 2 (Linear convergence for multiple zeros). The function

f2(x) := xp

has a multiple zero at 0 if p ≥ 2. The Newton method gives xk+1 = p−1
p xk , i.e. linear convergence. For p = 2, the

conditions (17) hold at all x0, but convergence is linear since the root ζ = 0 is multiple.

Example 3 (Large step). Let

(21) f3(x) := e1−x − 1

If x0 = 1 + ln a where a > 0 is large, then the first step u0 = −(a − 1) is large and negative, as is x1 = ln a − a.
Many consecutive steps are ≈ 1. For example,

x0 = 10, x1 = −8092.08, x2 = −8091.08, x3 = −8090.08, . . .

and thousands of iterations are required to approach the root ζ = 1.

Example 4 (Wrong direction). The function

(22) f4(x) := x e−x

has a unique zero at 0. The derivative of f4 is zero for x = 1, and negative for x > 1. For any initial x0 > 1 the Newton
iterates move away from the zero. For example: x0 = 2, x1 = 4, x2 = 5.3333, x3 = 6.5641, x4 = 7.74382, . . .

3. Convexity and monotone convergence

The iterative method (8) is related to a notion of generalized convexity discussed below.
All functions in this section are twice continuously differentiable in a real interval I. The function f is supported

by g at x0 if
f(x0) = g(x0) and f(x) ≥ g(x) for all x ∈ I ,

and supported strictly if the above inequality is strict for all x 6= x0.
Let F be a family of functions : I → IR. The function f is called [strictly] F–convex if at each point in I it is

[strictly] supported by a member of F , see [3], [4].
We use the family of functions (12)

(23) Fθ,α :=
{

a + b (x− θ)
(x− θ)α

: a, b ∈ IR
}

where θ and α are given parameters. In particular, for α = 0 and any θ, the affine functions

(24) Fθ,0 := {a + b (x− θ) : a, b ∈ IR} .

Since convex functions are supported by affine functions, Fθ,0–convexity is the same as ordinary convexity.

Lemma 1. Let I be a real interval, let f : I → IR be a finite function, and let θ, α ∈ IR be given, with θ 6∈ I. If{
(x− θ)α > 0
(x− θ)α < 0 ∀x ∈ I , then f is Fθ,α–convex in I if and only if (x− θ)α f(x) is

{
convex
concave in I.

Proof. Let F be a family of functions : I → IR, and p a function positive in I. Then for any function f : I → IR,

f is F–convex if and only if the product function (p f) is (pF)–convex

where (pF) is the family {p F : F ∈ F}. The lemma is then proved by the observations:
(a) Fθ,0 = (x− θ)α Fθ,α ,
(b) Fθ,0–convexity is ordinary convexity, and
(c) f is convex iff −f is concave. �

In Lemma 1 the point θ is assumed outside the interval I, so that

(25) (x− θ)α 6= 0 , ∀x ∈ I .

If θ is updated at each iteration, according to (9), we update I accordingly by deleting the interval between θ and
xk, to assure that (25) holds throughout the iterations.
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Lemma 1 can be explained using the 2nd derivative characterization of convexity. The family (23) satisfies the 2nd

order differential equation

(26) y′′ = − 2 α

x− θ
y′ − α (α− 1)

(x− θ)2
y .

It follows from [11] and [3] that the Fθ,α–convexity of f is characterized by the corresponding 2nd order differential
inequality

(27) f ′′(x) ≥ − 2 α

x− θ
f ′(x)− α (α− 1)

(x− θ)2
f(x) .

Consider the 2nd derivative of the modified function f̂(x) := (x− θ)αf(x)

f̂ ′′(x) = (x− θ)α f ′′(x) + 2 α (x− θ)α−1 f ′(x) + α (α− 1) (x− θ)α−2 f(x) .

If (x− θ)α > 0 holds in I then f̂ ′′ ≥ 0 (f̂ is convex) iff the inequality (27) holds, i.e. f is Fθ,α–convex. Similarly, if
(x− θ)α < 0 in I then (27) is equivalent to f̂ ′′ ≤ 0.

Convexity is related to the monotone convergence of Newton’s iterations

xk+1 := xk −
f(xk)
f ′(xk)

, k = 0, 1, 2, . . . (1)

If f is strictly convex and f(xk) > 0 then f(xj) > 0 for all j > k, i.e. f is positive at all successive points. If
f(x0) < 0 then f(x1) > 0 and thereafter f is positive at all iterations. An analogous result holds for the iteration
(8).

Theorem 2. Let f be strictly Fθ,α–convex in an interval I, θ 6∈ I, and let I include x0 and all iterates generated by

xk+1 = xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk) + αf(xk)
, k = 0, 1, 2, . . . (8)

(a) If f(x0) > 0 then f is positive for all successive points generated by (8).
(b) If f(x0) < 0 then f(x1) > 0 and thereafter f is positive at all iterations.

Proof. Follows from Theorem 1 which shows that (8) is equivalent to the Newton method applied to the modified
function (x− θ)α f(x), and Lemma 1. �

For other applications of generalized convexity in Newton’s method see [4, § 9], [5].

4. The method (8) with constant α

Consider the selection of the parameter α in (8) or (10). If monotone convergence is desired, the key to the
selection is provided by the inequality (27).

For example, consider the case x > θ and α ≤ 1. If f(x) > 0 and f ′(x) > 0 it follows that the RHS of (27) has
the same sign as α. Therefore, if the second derivative f ′′ is bounded, there is an α < 0 satisfying (27). A positive
α makes sense, in this case, only if f ′′ > 0, i.e. if f is strictly convex.

In §§ 4.1–4.2 we consider the special cases α = −1 [α = 1] as representative of negative [positive] α.

4.1. α = −1. Here the family (23) consists of the quadratic functions with a zero at θ,

(28) Fθ,−1 = {a (x− θ) + b (x− θ)2 : a, b ∈ IR} .

A function F ∈ Fθ,−1 supporting f at xk has its second zero at

(29) xk+1 = xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk)− f(xk)
,

which is (8) with α = −1. The modified function f̂ of (6) is

(30) f̂(x) =
f(x)
x− θ

its pole at θ acts as a barrier, repulsing the iterates of (8).
The method (29) becomes, for the selection (9),

(31) xk+1 = xk −
(xk − xk−1) f(xk)

(xk − xk−1) f ′(xk)− f(xk)
, k = 0, 1, 2, . . .

requiring two initial points x0 and x−1. Since x−1 is the initial barrier, the initial point x0 should be between the
sought zero ζ and x−1. Thus to apply (31) it is required to know on which side of x0 lies ζ.
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As long as the barrier is “away” from the sought zero, the step length |xk+1 − xk| of (31) is shorter than a
corresponding step length of the Newton method (1).

Example 5. We apply the method (31) to the function
f1(x) := x1/3 (20)

of Example 1. The table below gives a selected iterate xk for various combinations of x0 and x−1.
x−1 x0 iterate

1.01 1 x10 = 0.901845
x100 = 0.193404

1.1 1 x20 = −2.31673 10−6

1.2 1 x10 = −1.13652 105

1.5 1 x3 = 0

The table shows tricky dependence on x−1. One expects short steps and slow convergence if x−1 is very close to x0.
In general, reducing |x−1 − x0| does not retain convergence, as shown by the last two entries in the table.

Example 6. We apply the method (31) to the function
f3(x) := e1−x − 1 (21)

of Example 3. In contrast with the Newton method, the method (31) converges fast for all 1 < x0, as long as the
initial barrier x−1 is to the right of x0. Examples:

x−1 x0 x1 x2 x3 x4 x5

20 10 0.0123266 0.681959 0.875605 0.948526 0.978248
6 4 2.1897 1.17941 1.01489 1.00114 1.00008

Example 7. We apply the method (31) to the function
f4(x) := x e−x (22)

of Example 4. The table below gives a selected iterate xk for various combinations of x0 and x−1.
x−1 x0 iterate

2.1 2 x10 = 0.733696
x100 = 2.25589 10−15

2.5 2 x7 = 9.93368 10−7

3 2 x2 = 0

3.5 2 x5 = −2.20516
x300 = −0.0473647

Example 8. ([6, p. 178, Example 4]) We use (31) to find a root of

f(x) := e−x − sinx

x−1 x0 x1 x2 x3 x4 x5

0.5 0.6 0.586979 0.588741 0.588504 0.588536 0.588532

This is the smallest root. There are infinitely many roots lying close to π, 2π, 3π, . . . which can be computed
recursively by (31) if the initial barrier x−1 is taken between the initial x0 and the last found root. For example, to
compute the root near 2π we can use (31) with x−1 = 4 and x0 = 5,

x−1 x0 x1 x2 x3 x4 x5

4 5 5.76880 6.09502 6.21599 6.25999 6.27596

In contrast, for the same initial x0 = 5 the Newton method converges to the root closest to 3π,
x0 x1 x2 x3 x4 x5

5 8.32528 10.2880 9.11860 9.43463 9.42469

i.e. the nearest root 6.27596 is skipped.

4.2. α = 1. In this case the family Fθ,α of (23) consists of the hyperbolas with pole in θ

(32) Fθ,1 =
{

a

x− θ
+ b : a, b ∈ IR

}
.

The parameter θ should be sufficiently far from xk, for stability reasons. For α = 1 the method (8) gives

(33) xk+1 = xk −
(xk − θ) f(xk)

(xk − θ) f ′(xk) + f(xk)
, k = 0, 1, 2, . . .

and the inequality (27) becomes,

f ′′(x) ≥ − 2
x− θ

f ′(x) .
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For x < θ it follows that α = 1 is a good choice if f is strictly convex and |f ′| is sufficiently small, for example, near
a multiple root.

5. The quasi–Halley method

In this section we consider a version of (10), where also α is updated at each iteration.
The derivatives of the iteration function of (8)

(34) Φ(8)(x) := x− (x− θ) f(x)
(x− θ) f ′(x) + α f(x)

at a fixed point ζ 6= θ, where necessarily f(ζ) = 0, are

Φ′(8)(ζ) = 0 ,(35a)

Φ′′(8)(ζ) =
2 α f ′(ζ) + (ζ − θ) f ′′(ζ)

(ζ − θ) f ′(ζ)
.(35b)

The parameter α may be chosen so as to make |Φ′′(8)(ζ)| in (35b) as small as possible. The ideal choice (making
|Φ′′(8)(ζ)| = 0) is

(36) α = − (ζ − θ) f ′′(ζ)
2 f ′(ζ)

If f ′′ is continuous and θ is close to ζ, then (36) can be approximated as

α ≈ −f ′(ζ)− f ′(θ)
2 f ′(ζ)

which can be implemented, using (9) for θ, by the selection

(37) αk := −f ′(xk)− f ′(xk−1)
2 f ′(xk)

.

Substituting (9) and (37) in (8) gives the quasi–Halley method

(38) xk+1 := xk −
f(xk)

f ′(xk)− f ′(xk)− f ′(xk−1)
2 (xk − xk−1) f ′(xk)

f(xk)
, k = 0, 1, 2, . . .

The first iteration uses x0 and an additional point x−1 . Alternatively, the quasi–Halley method (38) can be obtained
from (3) by approximating (4) at xk as

a(xk) =
f ′′(xk)
2 f ′(xk)

≈ f ′(xk)− f ′(xk−1)
2 (xk − xk−1) f ′(xk)

.

The quasi–Halley method requires only the current values of f and f ′, and a previous (available) value of f ′, while
the Halley method uses the current f, f ′ and f ′′. The order of the quasi–Halley method is ≥ 2.41 (see Theorem 3),
as compared with order 3 for the Halley method.

The quasi–Halley method (38) is expected to perform, on the average, worse than the Halley method (5). Indeed,
for f(x) = x1/3 the table below shows convergence of (5) and divergence of (38). However, the two methods perform
similarly for the other examples in the table, and in general for sufficiently smooth functions. In particular, both
methods diverge for x e−x and x0 ≥ 2.

This similarity is explained in Theorem 5 which gives a local comparison of the Halley method and the quasi–Halley
method.

function method initial point(s) x1 x2 x3 x4 x5

x1/3 Halley x0 = 1 -0.5 0.25 -0.125 0.0625 -0.0312
quasi–Halley x−1 = 1.1, x0 = 1 -0.559693 1.4699 -0.755481 2.01688 -0.995203

x e−x Halley x0 = 2 4 6.4 8.69177 10.9142 13.0937
quasi–Halley x−1 = 2.1, x0 = 2 4.09816 6.82057 4.60104 6.27622 25.7395

x3 − 10 Halley x0 = 2 2.15384 2.15443 2.15443 2.15443 2.15443
quasi–Halley x−1 = 2.5, x0 = 2 2.15238 2.15443 2.15443 2.15443 2.15443

e1−x − 1 Halley x0 = 10 8.00049 6.00413 4.03079 2.21501 1.00018
quasi–Halley x−1 = 11, x0 = 10 6.83728 0.357585 0.849529 1 1

x4 + 2x2 Halley x0 = 1 0.4 0.135137 0.045055 0.015018 0.005006
quasi–Halley x−1 = 1.1, x0 = 1 0.370739 0.009415 0.002829 0.000943 0.000314
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The quasi–Halley method is usually better than the Halley method in the case of multiple roots (see e.g. the last
example in the above table). Indeed, the quasi–Halley method “remembers” the last iterate, and is therefore less
sensitive to the multiplicity of the root.

We illustrate next the Halley and quasi–Halley methods for complex roots.

Example 9. ([6, p. 177, Example 3]) Consider the complex polynomial

f(z) := z5 + (7− 2 i) z4 + (20− 12 i) z3 + (20− 28 i) z2 + (19− 12 i) z + (13− 26 i)

One of the five roots is found by the Halley and quasi–Halley methods as follows.

iterate Halley method quasi–Halley method
x0 = 3 i x−1 = 1, x0 = 3 i

x1 −0.499312 + 2.19129 i −0.343620 + 2.52897 i
x2 −0.987763 + 1.89479 i −1.01552 + 1.84006 i
x3 −1.00026 + 1.99934 i −1.02212 + 1.97408 i
x4 −1 + 2 i −0.999892 + 2 i
x5 −1 + 2 i

For simple roots of sufficiently smooth functions, the order of convergence of the quasi–Halley method is 2.41:

Theorem 3. If f ′′ is Lipschitz continuous near a root ζ , if f ′(ζ) 6= 0, and if the iterates (38) converge to ζ, then
as k →∞ ,

(39) |xk+1 − ζ| = O
(
|xk − ζ|1+

√
2
)

Proof. The iteration function of (38) at xk is

Φ(38)(x) = x− f(x)

f ′(x)−
(

f ′(x)− f ′(xk−1)
2(x− xk−1)f ′(x)

)
f(x)

and its second derivative at the zero ζ is

Φ′′(38)(ζ) =
f ′′(ζ)
f ′(ζ)

− f ′(ζ)− f ′(xk−1)
(ζ − xk−1)f ′(ζ)

=
f ′′(ζ)− f ′′(ξ)

f ′(ζ)

for some ξ between xk−1 and ζ. Since f ′′ is Lipschitz continuous

|f ′′(ζ)− f ′′(ξ)| ≤ L |ζ − ξ| , for some L .

. .. |Φ′′(38)(ζ)| ≤ L |ζ − ξ|
|f ′(ζ)|

≤ L |xk−1 − ζ|
|f ′(ζ)|

.(40)

. .. |xk+1 − ζ| ≈
|Φ′′(38)(ζ)|

2
|xk − ζ|2 ≈ L

2 |f ′(ζ)|
|xk−1 − ζ| |xk − ζ|2 .

. .. |xk+1 − ζ| = O
(
|xk−1 − ζ|γ

2
)

= O
(
|xk−1 − ζ|2γ+1

)
,

where the order of convergence, γ, satisfies the quadratic equation

γ2 − 2γ − 1 = 0 .

�

Other first–derivative methods, with order 1+
√

2, are known, see e.g. Method 9a in [15, p. 234]. Since the second
inequality in (40) is strict, the quasi-Halley method may in fact have a higher order, i.e. its order γ satisfies

(41) 1 +
√

2 ≤ γ < 3 .

The possibility that 1 +
√

2 < γ is supported by numerical experience, and the results of the next section, showing
that (for sufficiently smooth functions) the quasi-Halley method is virtually indistinguishable from the Halley method,
near a root to which both converge.
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6. Comparison of steps

Iterative methods can be compared locally by comparing their steps at given points. The steps can be compared
in terms of length, as we do here, or by their effect on the function value, see [2].

The proofs in this section are tedious, hence omitted.
We first compare the steps of the Newton and Halley methods, assuming both steps emanate from the same point

xk, arrived at by Newton’s method. This corresponds to a hypothetical situation where at an iterate xk of Newton’s
method we have an option of continuing (and making a Newton step) or switching to the Halley method (5), making
a Halley step

(42) hk :=
f(xk)

f ′(xk)− f ′′(xk)
2f ′(xk)

f(xk)
, k = 0, 1, 2, . . .

To simplify the writing we denote by fk the function f evaluated at xk . Similarly, f ′k and f ′′k denote the derivatives
f ′ , f ′′ evaluated at xk . The steps to be compared are

uk :=
fk

f ′k
and hk :=

fk

f ′k −
f ′′k
2f ′k

fk

.

The next lemma gives a condition for the Newton step uk and the Halley step hk to have the same sign.

Lemma 2. The steps uk and hk have the same sign iff

(43) |f ′k|2 >
f ′′k fk

2
,

in which case |hk| ≥ |uk| if fkf ′′k ≥ 0 ,

|hk| < |uk| if fkf ′′k < 0 .

It is reasonable to assume that conditions (19) hold at the point xk, which is arrived at by the Newton method,
and where the steps uk and hk are compared. Under these conditions, we have the following comparison of the
Newton and Halley steps.

Theorem 4. If conditions (19) hold, then the Newton step uk and the Halley step hk have the same sign, and are
related by

(44)
2
3
|uk| ≤ |hk| ≤

4
3
|uk| .

We next compare the Halley step hk of (42) and the quasi–Halley step

(45) qk :=
f(xk)

f ′(xk)− f ′(xk)− f ′(xk−1)
2 (xk − xk−1) f ′(xk)

f(xk)
, k = 0, 1, 2, . . .

evaluated at the same point xk arrived at by the Newton method.

Theorem 5. Let f have continuous third derivative in the interval J0, and let

sup
x∈J0

|f ′′′(x)| = N .

If conditions (19) hold, then the Halley step hk and the quasi–Halley step qk are related by

(46) |hk − qk| ≤
N

2 |f ′k|
|uk−1|3 .

Theorem 5 gives a comparison of the Halley step hk and the quasi–Halley step qk in terms of the underlying
Newton step. If the point xk is sufficiently close to a root, so that the last Newton step uk−1 is small, then the steps
hk and qk are close within O(|uk−1|3).

If the two steps hk and qk are compared at a point xk arrived at by the Halley method, we can show that

|hk − qk| = O(|hk−1|3) ,

as can be expected from Theorem 5 and the comparison between the Newton and Halley steps in Theorem 4.



10 ADI BEN-ISRAEL

Acknowledgments

Thanks to Ronny Ben-Tal, Aaron Melman, David Shanno, Prabha Sharma, Ron Stern, Henry Wolkowicz and the
referee, for help and constructive suggestions. The numerical examples were computed using Derive, [12].

References

[1] G. Alefeld, On the convergence of Halley’s method, Amer. Math. Monthly 88(1981), 530–536.

[2] J. Barzilai and A. Ben-Tal, Nonpolynomial and inverse interpolation for line search: Synthesis and convergence rates, SIAM J.

Numer. Anal. 19(1982), 1263–1277.
[3] A. Ben-Tal and A. Ben-Israel, A generalization of convex functions via support properties, J. Austral. Math. Soc. 21A(1976), 341–361.

[4] A. Ben-Tal and A. Ben-Israel, F–convex functions: Properties and applications, pp. 301–334 in [14]

[5] S.L. Brumelle and M.L. Puterman, Newton’s method for W–convex operators, pp. 399–414 in [14]
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