
Nonlinear Analysis 47 (2001), 1961–1971

A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES

YURI LEVIN AND ADI BEN-ISRAEL

Abstract. The classical Newton–Kantorovich method for solving systems of equations f(x) = 0
uses the inverse of the Jacobian of f at each iteration. If the number of equations is different
than the number of variables, or if the Jacobian cannot be assumed nonsingular, a generalized
inverse of the Jacobian can be used in a Newton method whose limit points are stationary points
of ‖f(x)‖2. We study conditions for local convergence of this method, prove quadratic convergence,
and implement an adaptive version this iterative method, allowing a controlled increase of the ranks
of the {2}-inverses used in the iterations.

1. Introduction

Notation: Given a differentiable function f : Rn → Rm, we denote the Jacobian of f at x,
(

∂fi

∂xj
(x)

)
,

by Jf (x) or by Jx. S(x0, r) denotes the open ball {x : ‖x− x0‖ < r}.
The Newton method for solving a system of equations

f(x) = 0 , or fi(x1, x2, · · · , xn) = 0 , i = 1, · · ·m , (1)

uses the iterations, xk+1 := xk − Jf (xk)−1 f(xk) , k = 0, 1, · · · (2)
where the Jacobian Jf (x) is assumed nonsingular at each iteration. If this cannot be assumed, or
in general if m 6= n, the Moore-Penrose inverse of the Jacobian can be used in the iterations

xk+1 := xk − Jf (xk)† f(xk) , k = 0, 1, · · · (3)

whose limit points are stationary points of the sum of squares
∑

i f2
i (x), see [2]. The method (3)

is called the normal flow algorithm, since in the case n = m+1 the iterations steps −Jf (xk)† f(xk)
are asymptotically normal to the Davidenko flow, see [7]. Walker [1, pp. 679-699] gave the local
convergence theorem under the normal flow hypothesis which assumes that Jf is of full rank m and
Lipschitz in an open convex set, and Jf (xk)† is bounded in this set.

More generally, any {2}–inverse of the Jacobian can be used in (3) instead of the Moore-Penrose
inverse, see [3, pp. 27–31]. Recall that a {2}-inverse (also outer inverse) of A ∈ Rm×n is a matrix
X ∈ Rn×m satisfying XAX = X , in which case rankX ≤ rank A , with equality if X = A† . We
say that X is a low rank [high rank ] {2}-inverse of A if its rank is near 0 [near rank A], respectively.
Denoting a {2}–inverse by #, the method (3) becomes

xk+1 := xk − Jf (xk)# f(xk) , k = 0, 1, · · · (4)

This method was studied by Nashed and Chen [9], establishing quadratic convergence to a solution
of Jf (x0)# f(x) = 0 under suitable conditions on f and the initial point x0. Newton–like methods

Date: May 27, 2000.
1991 Mathematics Subject Classification. Primary 65H05, 65H10; Secondary 49M15.
Key words and phrases. Newton-Raphson Method, Systems of equations, Generalized inverse.

1



2 YURI LEVIN AND ADI BEN-ISRAEL

for singular points were also studied by Reddien [10], Decker and Kelley [5], Kelley and Suresh [8],
Nashed and Chen [9], [4] and others.

Let Txk denote a {2}-inverse of Jf (xk). Then under certain conditions on f and x0, the iterates

xk+1 := xk − Txk f(xk) , k = 0, 1, · · · (5)

converge to a point x∗ satisfying

Tx∗ f(x∗) = 0 , (6)

see [3, p. 28, Theorem 6]. This convergence is quadratic, see Theorem 1 below. However, a solution
of (6) is a reasonable substitute for a solution of the original equation (1) only if Tx∗ is a high rank
{2}-inverse of Jf(x∗). In particular, if Tx∗ = J†f(x∗) then (6) reduces to

∇‖f(x∗)‖2 = 0 . (7)

On the other hand, if Tx∗ is a low rank {2}-inverse of Jf(x∗) then equation (6) may be too trivial
to be of any good.

2. Convergence

Lemma 1. Let C be a convex subset of Rn, let f : C → Rm be differentiable and let M > 0 satisfy

‖Jf (x)− Jf (y)‖ ≤ M ‖x− y‖ , for all x,y ∈ C .

Then

‖f(x)− f(y)− Jf (y)(x− y)‖ ≤ M

2
‖x− y‖2 , for all x,y ∈ C .

Proof. For any x,y ∈ C, the function g : [0, 1] → Rm, defined by g(t) := f(y + t(x − y)), is
differentiable for all 0 ≤ t ≤ 1, and its derivative is

g′(t) = Jf (y + t(x− y))(x− y) .

So, for all 0 ≤ t ≤ 1∥∥g′(t)− g′(0)
∥∥ = ‖Jf (y + t(x− y))(x− y)− Jf (y)(x− y)‖

≤ ‖Jf (y + t(x− y))− Jf (y)‖ ‖x− y‖ ≤ Mt ‖x− y‖2 .

∴ ‖f(x)− f(y)− Jf (y)(x− y)‖ =
∥∥g(1)− g(0)− g′(0)

∥∥ =
∥∥∥∥∫ 1

0

(
g′(t)− g′(0)

)
dt

∥∥∥∥
≤

∫ 1

0

∥∥g′(t)− g′(0)
∥∥ dt = M

∫ 1

0
tdt ‖x− y‖2 =

M

2
‖x− y‖2 .

�

Theorem 1. Let x0 ∈ Rn, r > 0 and let f : Rn → Rm be differentiable in the open ball S(x0, r).
Let M > 0 be such that

‖Ju − Jv‖ ≤ M ‖u− v‖ (8)



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 3

for all u,v ∈ S(x0, r), where Ju is the Jacobian of f at u. Further, assume that for all x ∈ S(x0, r),
the Jacobian Jx has a {2}–inverse Tx ∈ Rn×m

TxJxTx = Tx , (9)
such that ‖Tx0‖

∥∥f(x0)
∥∥ < α , (10)

and for all u,v ∈ S(x0, r), ‖(Tu − Tv)f(v)‖ ≤ N ‖u− v‖2 , (11)

and
M

2
‖Tu‖+ N ≤ K < 1 , (12)

for some positive scalars N,K and α, and

h := αK < 1 , r >
α

1− h
. (13)

Then:
(a) Starting at x0, all iterates

xk+1 = xk − Txkf(xk), k = 0, 1, . . . (14)

lie in S(x0, r).
(b) The sequence {xk} converges, as k →∞, to a point x∗ ∈ S(x0, r), that is a solution of

Tx∗f(x) = 0 . (15)

(c) For all k ≥ 0 ∥∥∥xk − x∗
∥∥∥ ≤ α

h2k−1

1− h2k .

Since 0 < h < 1, the above method is at least quadratically convergent.

Proof.
Part 1. Using induction on k we prove that the sequence (14) satisfies for k = 0, 1, ...

xk ∈ S(x0, r) , (16a)∥∥∥xk+1 − xk
∥∥∥ ≤ αh2k−1 . (16b)

For k = 0, (16b), and for k = 1, (16a), follow from (10). Assuming (16b) holds for 0 ≤ j ≤ k − 1
we get

∥∥∥xk+1 − x0
∥∥∥ ≤ k+1∑

j=1

∥∥xj − xj−1
∥∥ ≤ α

k∑
j=0

h2j−1 <
α

1− h
< r ,



4 YURI LEVIN AND ADI BEN-ISRAEL

which proves (16a). To prove (16b) we write

xk+1 − xk = −Txkf(xk) = xk − xk−1 − Txkf(xk) + Txk−1f(xk−1) , by (14) ,

= Txk−1Jxk−1(xk − xk−1)− Txkf(xk) + Txk−1f(xk−1) ,

since TJT = T implies TJx = x for every x ∈ R(T ) ,

= −Txk−1(f(xk)− f(xk−1)− Jxk−1(xk − xk−1)) + (Txk−1 − Txk)f(xk) .

∴
∥∥∥xk+1 − xk

∥∥∥ ≤
∥∥∥−Txk−1(f(xk)− f(xk−1)− Jxk−1(xk − xk−1))

∥∥∥ +
∥∥∥(Txk−1 − Txk)f(xk)

∥∥∥
≤

(
M

2
‖Txk−1‖+ N

) ∥∥∥xk − xk−1
∥∥∥2

, by (8), Lemma 1 and (11) ,

≤ K
∥∥∥xk − xk−1

∥∥∥2
, by (12) . (17)

Consequently,
∥∥xk+1 − xk

∥∥ ≤ αh2k−1. This inequality is valid for k = 0 because of (10). Assuming
it holds for any k ≥ 0, its validity for k + 1 follows, since (17) implies∥∥∥xk+1 − xk

∥∥∥ ≤ K
∥∥∥xk − xk−1

∥∥∥2
≤ Kα2h2k−2 ≤ αh2k−1 , proving (16b) .

Part 2. From (16b) it follows that for m ≥ n we have∥∥xm+1 − xn
∥∥ ≤

∥∥xm+1 − xm
∥∥ +

∥∥xm − xm−1
∥∥ + · · ·+

∥∥xn+1 − xn
∥∥

≤ αh2n−1(1 + h2n
+ (h2n

)2 + ...) <
αh2n−1

1− h2n < ε (18)

for sufficiently large n ≥ N(ε), because 0 < h < 1. Therefore {xk} is a Cauchy sequence, and its
limit lim

k→∞
xk = x∗ lies in the closure S(x0, r) since xk ∈ S(x0, r), for all k ≥ 0.

Now, let us show that x∗ is a zero of Txf(x) = 0 in S(x0, r).
From

∥∥Txkf(xk)
∥∥ =

∥∥xk+1 − xk
∥∥ it follows that lim

k→∞

∥∥Txkf(xk)
∥∥ = 0.

Note,

‖Tuf(u)− Tvf(v)‖ = ‖(Tu − Tv)f(v) + Tu(f(u)− f(v))‖
≤ ‖(Tu − Tv)f(v)‖+ ‖Tu(f(u)− f(v))‖
≤ N ‖u− v‖2 + ‖Tu‖ C ‖u− v‖ , where C is a constant,

by (11) and the fact that f(x) is differentiable

≤ N ‖u− v‖2 + C ′ ‖u− v‖ , where C ′ is a constant, by (12).

Therefore, since f is continuous at x∗, Txkf(xk) → Tx∗f(x∗) as xk → x∗ , and

lim
k→∞

Txkf(xk) = Tx∗f(x∗) = 0 ,

i.e. x∗ is a zero of Txf(x) in S(x0, r) .
Part 3. Taking the lim

m→∞
in (18) we get

lim
m→∞

∥∥xm+1 − xn
∥∥ = ‖x∗ − xn‖ ≤ αh2n−1

1− h2n .

Since 0 < h < 1, the above method is at least quadratically convergent. �



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 5

3. Implementation

We consider an adaptive implementation of the iterative method (14), allowing the ranks of the
{2}-inverses Tf(xk) to increase gradually. Recall that the Singular Value Decomposition (SVD) of
A ∈ Rm×n

r is
A = U Σ V T , (19)

where U and V are orthogonal matrices, and Σ is a diagonal m×n matrix with r nonzero diagonal
elements Σii = σi , i = 1, · · · , r, the singular values of A, assumed ordered,

σ1 ≥ σ2 ≥ · · · ≥ σr . (20)

A {2}-inverse of A can be constructed as

X = V Σ(2) UT (21)

where Σ(2) is {2}-inverse of Σ, i.e. a diagonal n ×m matrix with at most r nonzero elements at
the first r positions on the diagonal,

Σ(2)
ii =

1
σi

or 0 , i = 1, · · · , r . (22)

The two extreme cases are:
• Σ(2)

ii = 1
σi

, i = 1, · · · , r , in which case X = A†,

• Σ(2)
ii = 0 , i = 1, · · · , r , in which case X = O.

Following Chen, Nashed and Qi [4] we implement the iterative method (14) by constructing the
{2}-inverses Txk from the SVD of Jf(xk) using (21) with the truncation rule

Σ(2)
ii =

{
1
σi

if σi > ε

0 otherwise
(23)

for some ε > 0. We consider here two variants of (23)
Method 1: the tolerance ε in (23) is fixed throughout the iterations, say

εk := 10−12 , k = 1, 2, · · · (24)

Method 2: the tolerance is reduced at each iteration, for example

εk+1 :=
εk

10
, k = 1, 2, · · · (25)

In both methods it may happen the tolerance εk is larger than some of the singular values of Jf(xk),
say

σk
1 ≥ σk

2 ≥ · · ·σk
p > εk > σk

p+1 ≥ · · · ≥ σk
r

and the singular values that are smaller than εk will be taken as 0 in (23). In this case Method
2 has two advantages: (a) at the first iterations it considers only the leading singular values, and
accordingly does less work per iteration, and (b) at later iterations, the smaller tolerance give the
precision required to make equation (15) a reasonable substitute for (1).

Alternatively, the method (14) can be implemented by using the QR factorization to compute a
{2}–inverse, see Chen, Nashed and Qi [4, part 5]. This approacj would have the advantage of less
work per iteration and greater stability.



6 YURI LEVIN AND ADI BEN-ISRAEL

4. Numerical Experiments

The two methods listed above are compared. In Method 2 we start with a large tolerance, ε = 100,
and if we get a zero Newton step (because all singular values are smaller than the tolerance), divide
the tolerance by 10 until we get the first nonzero Newton step. Then at each iteration divide
ε := ε/10 as long as ε > 10−12. Table 1 shows the comparison results between these two methods.

Example 1.

f(x) =
(

3x2
1 − x2

exp(1− x1 − x2 − x3)− 1

)
=

(
0
0

)

Method 1 Method 2
Iteration x f(x) x f(x)

0 [1., 1., 1.2] [2., -.8892] [1., 1., 1.2] [2., -.8892]
1 [.0443, -2.734, -2.138] [2.740, 338.7] [.6734, 1.054, 1.200] [.307, -.8544]
2 [-1.053, -.286, -2.491] [3.613, 124.2] [.5967, 1.073, 1.200] [-.005, -.8459]
3 [-.5216, -.0299, -2.287] [.8462, 45.48] [-.1251, -1.516, -.981] [1.563, 36.41]
4 [-.3670, .3333, -1.826] [.0708, 16.46] [.5063, -.426, -1.728] [1.195, 13.13]
5 [-.4895, .6733, -1.101] [.0455, 5.807] [.3290, .2305, -1.278] [.0941, 4.579]
6 [-.5963, 1.033, -.5006] [.034, 1.898] [.4727, .6084, -.9788] [.0618, 1.454]
7 [-.6684, 1.326, -.0663] [.014, .504] [.5510, .8923, -.7483] [.0185, .357]
8 [-.7033, 1.480, .1499] [.004, .076] [.5835, 1.019, -.6439] [.003, .042]
9 [-.7101, 1.513, .1947] [0, .002] [.5882, 1.038, -.6277] [0, .002]
10 [-.7103, 1.514, .1960] [0, 0] [.5885, 1.039, -.6269] [0, -.0006]

Example 2.

f(x) =
(

x1 − cos(x2)
x2 − cos(x3)

)
=

(
0
0

)
Method 1 Method 2

Iteration x f(x) x f(x)
0 [1., 1., 1.5] [.4597, .9293] [1., 1., 1.5] [.4597, .9293]
1 [.9500, .5133, 1.056] [.0789, .0209] [.7600, .5138, 1.216] [-.1109, .1664]
2 [.8838, .4874, 1.062] [.0002, .0003] [.7393, .4654, 1.180] [-.1543, .0845]
3 [.8837, .4872, 1.062] [.0001, .0001] [.8992, .4529, 1.102] [0, .0011]
4 [.8836, .4871, 1.062] [-.0001, 0] [.8994, .4523, 1.101] [0, -.0004]
5 [.8837, .4871, 1.062] [0, 0] [.8993, .4525, 1.101] [-.0001, -.0002]
6 [.8837, .4871, 1.062] [0, 0] [.8993, .4526, 1.101] [0, -.0001]
7 [.8837, .4871, 1.062] [0, 0] [.8993, .4527, 1.101] [0, 0]

References

[1] E.L. Allgower and K. Georg, Computational solution of nonlinear Systems of equations, Lecture
Notes in Applied Math. 26 (1990)

[2] A. Ben-Israel, A Newton-Raphson method for the solution of sytems of equations, J. Math.
Anal. Appl. 15(1966), 243–252



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 7

[3] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, J. Wiley,
1974

[4] X. Chen, M.Z. Nashed and L. Qi, Convergence of Newton’s method for singular smooth and
nonsmooth equations using adaptive outer inverses, SIAM J. Optim. 7(1997), 445–462

[5] D. W. Decker and C. T. Kelley, Newton’s method at singular points, SIAM J. Numer. Anal.
17(1980), 66–70

[6] J.P. Dedieu and M. Shub, Newton’s method for overdetermined systems of equations, Math. of
Comput. (1999), 1–17

[7] A. Galantai, The theory of Newton’s method, to appear
[8] C. T. Kelley and R. Suresh, A new acceleration method for Newton’s method at singular points,

SIAM J. Numer. Anal. 20(1983), 1001–1009
[9] M.Z. Nashed and X. Chen, Convergence of Newton-like methods for singular operator equations

using outer inverses, Numer. Math. 66(1993), 235–257
[10] G.W. Reddien, On Newton’s method for singular problems, SIAM J. Numer. Anal. 15(1978),

993–996
[11] J. Stoer and K. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1976

Appendix A: Maple Programs

Note. In the examples below the equations in all systems have zero RHS’s, so the values of the
functions give an indication of the error. Also, the functions use a vector variable x of unspecified
dimension, making it necessary to define the dimension, say

> x:=array(1..3):

before using a function. We use the linalg package, so

> restart:with(linalg):

The function recipvec(x) computes a vector of reciprocals of elements of x if different from 0,
otherwise 0.

> recipvec:=proc(x,eps)
> local k,n,y;n:=vectdim(x);y:=array(1..n);
> for k from 1 to n do
> if abs(x[k])>eps then y[k]:=1/x[k] else y[k]:=0 fi
> od;eval(y);
> end:

> recipvec([1,2,-3,0.001,0.0000000001],1.0);[
0,

1
2
, −1

3
, 0, 0

]
The function vectodiag(x, m, n) computes an mxn matrix with elements of x on diagonal.

> vectodiag:=proc(x,m,n)
> local i,j,k,X;X:=array(1..m,1..n);k:=vectdim(x);
> for i from 1 to m do
> for j from 1 to n do
> if i=j and i<=k then X[i,j]:=x[i] else X[i,j]:=0 fi
> od od;evalm(X); end:



8 YURI LEVIN AND ADI BEN-ISRAEL

> vectodiag(recipvec([1,2,-3,0.001,0.0000000001],0.001),4,5);

1 0 0 0 0

0
1
2

0 0 0

0 0 −1
3

0 0

0 0 0 0 0


The function MoorePenrose(A) gives the Moore-Penrose inverse of A.

> MoorePenrose:=proc(A,eps)
> local m,n,x,U,V,D1;
> m:=rowdim(A):n:=coldim(A):
> x:=evalf(Svd(A,U,V));
> U:=evalm(U);V:=evalm(V);
> D1:=vectodiag(recipvec(x,eps),n,m);
> evalm(V&*D1&*transpose(U));
> end:

> A:=matrix([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10],
> [11, 12, 13, 14, 15]]);

A :=


1 2 3 4 5

6 7 8 9 10

11 12 13 14 15


> MoorePenrose(A,10.1);

.002035507239 .005216634966 .008397762693

.002288910435 .005866061284 .009443212132

.002542313631 .006515487601 .01048866157

.002795716827 .007164913919 .01153411101

.003049120022 .007814340237 .01257956045


The function NewtonStepMP(f, x, x0) computes the next Newton step at the point x0 using

the Moore-Penrose inverse of the Jacobian.

> NewtonStepMP:=proc(f,x,x0,eps)
> local val,jac;
> val:=eval(subs(x=x0,f)):
> jac:=eval(jacobian(f,x),x=x0):jac:=MoorePenrose(jac,eps);
> evalm(x0-jac &* val);



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 9

> end:

A.1. The version of the Newton method with fixed epsilon.
The function NewtonMP 1(f, x, x0, N) computes N iterations of the Newton method starting

with x0, the epsilon is fixed.

> NewtonMP_1:=proc(f,x,x0,N)
> local sol,valf,eps; global k;
> k:=0; eps:=1*10^(-12);
> sol[0]:=x0: valf:=eval(subs(x=x0,f)):
> lprint(ITERATION,0):print(x0):
> lprint(function):print(valf):
> for k from 1 to N do
> sol[k]:=NewtonStepMP(f,x,sol[k-1],eps):
> valf:=eval(subs(x=sol[k],f)):
> if (sqrt(norm(sol[k]-sol[k-1],2))<eps) then break fi:
> od:
> lprint(ITERATION,k-1):
> lprint(solution):print(sol[k-1]):
> lprint(function):print(valf):
> end:

Example A.3.

f(x) =
(

3x2
1 − x2

exp(1− x1 − x2 − x3)− 1

)
=

(
0
0

)
> x:=array(1..3);

x := array(1..3, [])

> NewtonMP_1([3*x[1]^2-x[2],exp(1-x[1]-x[2]-x[3])-1],
> x,[1.,1.,2.],20);

ITERATION 0

[1., 1., 2.]

function

[2., 0.9502129316]

ITERATION 20

solution

[-1.083003756, 3.518690503, -1.435717477]

function



10 YURI LEVIN AND ADI BEN-ISRAEL

[.905 10−6, 0.000030730]

Example A.4.

f(x) =

x1 + x1x2 + x2
2

x2
1 − 2x1 + x2

2

x1 + x2
3

 =

0
0
0


> x:=array(1..3);

x := array(1..3, [])

> NewtonMP_1([x[1]+x[1]*x[2]+x[2]^2,x[1]^2-2*x[1]+x[2]^2,
> x[1]+x[3]^2],x,[0.1,0.5,1.],20);

ITERATION 0

[.1, .5, 1.]

function

[.40, .06, 1.1]

ITERATION 20

solution

[.190816737 10−21, .5123038991 10−6, .9491734845 10−6]

function

[.2624552852 10−12, .2624552846 10−12, .9009303039 10−12]

Example A.5.

f(x) =
(

x1 − cos(x2)
x2 − cos(x3)

)
=

(
0
0

)
> x:=array(1..3);

x := array(1..3, [])

> NewtonMP_1([x[1]-cos(x[2]),x[2]-cos(x[3])],x,[1.,1.,1.],20);

ITERATION 0

[1., 1., 1.]

function



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 11

[.4596976941, .4596976941]

ITERATION 4

solution

[.7915772199, .6574105446, .8534191608]

function

[0, 0]

A.2. The version of the Newton method with updated epsilon.
The function NewtonMP 2(f, x, x0, N) computes N iterations of the Newton method starting

with x0, the epsilon is updated.

> NewtonMP_2:=proc(f,x,x0,N)
> local sol,valf,eps,eps1; global k;
> eps:=100.1; eps1:=1*10^(-12);
> sol[0]:=x0:valf:=eval(subs(x=x0,f)):
> lprint(ITERATION,0):print(x0):
> lprint(function):print(valf):
> sol[1]:=NewtonStepMP(f,x,sol[0],eps):
> while (norm(sol[1]-sol[0],2)=0) do
> eps:=eps/10; sol[1]:=NewtonStepMP(f,x,sol[0],eps):
> od:
> valf:=eval(subs(x=sol[1],f)):
> for k from 2 to N do
> sol[k]:=NewtonStepMP(f,x,sol[k-1],eps):
> if (eps>eps1) then eps:=eps/10 fi:
> valf:=eval(subs(x=sol[k],f)):
> if (sqrt(norm(sol[k]-sol[k-1],2))<eps1) then break fi:
> od:
> lprint(ITERATION,k-1):
> lprint(solution):print(sol[k-1]):
> lprint(function):print(valf):
> end:

Example A.6.

f(x) =
(

3x2
1 − x2

exp(1− x1 − x2 − x3)− 1

)
=

(
0
0

)
> x:=array(1..3);

x := array(1..3, [])



12 YURI LEVIN AND ADI BEN-ISRAEL

> NewtonMP_2([3*x[1]^2-x[2],exp(1-x[1]-x[2]-x[3])-1],
> x,[1.,1.,2.],20);

ITERATION 0

[1., 1., 2.]

function

[2., -.9502129316]

ITERATION 20

solution

[-.9139879013, 2.506121651, -.5921337500]

function

[0, 0]

Example A.7.

f(x) =

 x2
1 − x2

x2
2 − x3

exp(1− x1 − x2 − x3)− 1

 =

0
0
0


> x:=array(1..3);

x := array(1..3, [])

> NewtonMP_2([x[1]^2-x[2],x[2]^2-x[3],
> exp(1-x[1]-x[2]-x[3])-1],x,[1.2,1.1,1.],20);

ITERATION 0

[1.2, 1.1, 1.]

function

[.34, .21, -.8997411563]

ITERATION 15

solution

[.5698402910, .3247179572, .1054417517]



A NEWTON METHOD FOR SYSTEMS OF m EQUATIONS IN n VARIABLES 13

function

[0, 0, 0]

Example A.8.

f(x) =
(

x1 − cos(x2)
x2 − cos(x3)

)
=

(
0
0

)
> x:=array(1..3);

x := array(1..3, [])

> NewtonMP_2([x[1]-cos(x[2]),x[2]-cos(x[3])],
> x,[1.,1.,1.],10);

ITERATION 0

[1., 1., 1.]

function

[.4596976941, .4596976941]

ITERATION 6

solution

[.7915096631, .6575210917, .8532724462]

function

[0, 0]

Yuri Levin, RUTCOR–Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew
Rd, Piscataway, NJ 08854-8003, USA

E-mail address: ylevin@rutcor.rutgers.edu

Adi Ben-Israel, RUTCOR–Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew
Rd, Piscataway, NJ 08854-8003, USA

E-mail address: bisrael@rutcor.rutgers.edu


