
Lecture 9: Some Applications in

Statistics
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The linear statistical model

Given a random vector x = (xi) with expected value

Ex = µ = (µi), its covariance matrix is

Covx = E {(x− µ)(x − µ)T } =
[
E (xi − µi)(xj − µj)

]
.

A linear statistical model is

y = Xβ + ε (1)

• y ∈ Rn is observed, or measured in some experimental set-up,

• the parameters β ∈ R
p are unknown,

• the matrix X ∈ Rn×p (the design matrix) is given, and

• ε ∈ Rn is a random vector representing the errors of observing

y, which are not systematic, i.e.,

E ε = 0 , Cov ε = V 2 , assumed known. (2)
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The linear statistical model (cont’d)

The story so far:

y = Xβ + ε (1)

E ε = 0 , Cov ε = V 2 , (2)

From (1)–(2) it follows that

Ey = Xβ , Covy = V 2 . (3)

This model has several names, including: linear statistical

model (or just linear model), linear regression and the

Gauss–Markov model. We denote this model by (y, Xβ, V 2).

The problem: estimate a linear function of the parameters, say

Bβ , for a given matrix B ∈ R
m×p , (4)

from the observed y (the problem of estimating the variance V 2, if

unknown, is not treated here.)
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The linear statistical model (cont’d)

A linear estimator (abbreviated LE) of Bβ is

Ay , for some A ∈ R
m×n . (5)

It is unbiased (abbreviated LUE) if

E {Ay} = Bβ , for all β ∈ R
p , (6)

and it is the best linear unbiased estimator (BLUE) if its

variance is minimal, in some sense, among all LUE’s. In general,

not all linear functions have LUE’s.

The function Bβ is called estimable if it has an LUE, i.e., if there

is a matrix A ∈ R
m×n such that (6) holds.

The unbiasedness condition (6) reduces to an identity

AXβ = Bβ , for all β , or equivalently, AX = B , (7)
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4 main cases of the model (y, Xβ, V 2)

There are 2 cases for the design matrix X ∈ R
n×p
r :

(A) X is of full column rank (r = p), or

(B) X is of rank r < p,

and 2 cases for the covariance matrix V 2 (which is PSD):

(1) V is nonsingular, i.e. V 2 is positive definite (PD), or

(2) V is singular.

giving 4 cases for the model, (A1), (B1), (A2) and (B2).

The simplest case is studied next.
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X full column rank, V nonsingular

Consider the model (y, Xβ, V 2) with V nonsingular, and the

n × p matrix X is of full column rank, i.e., R(XT ) = Rp.

Then any linear function Bβ is estimable. In particular, for B = I

the linear equation (7) reduces to AX = I, and we conclude that

Ay is an LUE of β whenever A is a left–inverse of X . The set of

LUE’s of β is therefore

LUE(β) = {X(1)y : X(1) ∈ X{1}} .

and the minimum–norm LUE of β is

β̂ =
(
XT X

)−1
XT y = X†y . (8)

Without loss of generality we can assume

V 2 = σ2I

i.e., the errors have equal variances and are uncorrelated.
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The Gauss–Markov Theorem

Theorem. Consider the linear model (y, Xβ, σ2I) with X of full

column–rank. Then for any B ∈ Rm×p:

(a) The linear function Bβ is estimable.

(b) The estimator Bβ̂ = BX†y is BLUE in the sense that

Cov Ay < Cov Bβ̂ (9)

for any other LUE Ay of Bβ.

(c) The BLUE Bβ̂ = BX†y belongs to the class of estimators

E(X) := {Ay : A = KXT , for some matrix K} . (10)

If Ay is any LUE in E(X) (i.e. the rows of A are in R(X)) then

Ay = Bβ̂ with probability 1. (11)
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Proof

(a) was shown above.

(b) Let Ay be any LUE of Bβ. Then:

(b1) The covariance of Ay is Cov Ay = σ2AAT .

(b2) The covariance of Bβ̂ is

Cov B
(
XT X

)−1
XT y = σ2B

(
XT X

)−1
BT

= σ2AX
(
XT X

)−1
XT AT , (∵ B = AX) .

∴ Cov Ay − Cov Bβ̂ = σ2A
(
I − X

(
XT X

)−1
XT

)
AT . (12)

(c) The estimate BX†y is in E(X) since X† = (XT X)†XT . Then

(11) follows from

RHS(12) = σ2APN(XT )A
T = O ,

if A = KXT for some K. 2
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The Gauss-Markov Theorem for functionals

Consider the problem of estimating linear functionals 〈b, β〉. A

linear estimate 〈a,y〉 is in the class E(X) if and only if a ∈ R(XT ).

The G–M Theorem then reduces to:

Corollary. Let (y, Xβ, σ2I) and X be of full column rank. Then

for any b ∈ Rp:

(a) The linear functional 〈b, β〉 is estimable.

(b) The estimator 〈b, β̂〉 = 〈b, BX†y〉 is BLUE in the sense that

Var 〈a,y〉 ≥ Var 〈b, β̂〉

for any other LUE 〈a,y〉 of 〈b, β̂〉.

(c) If 〈a,y〉 is any LUE of 〈b, β̂〉 with a ∈ R(XT ) then

〈a,y〉 = 〈b, β̂〉 with probability 1. 2
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The general (y, Xβ, V 2)

Theorem (Generalized Gauss–Markov Theorem). Let

(y, Xβ, V 2) be a linear model, and let 〈b, β〉 be any estimable

functional. Then:

(a) 〈b, β〉 has a unique BLUE 〈b, β̃〉 where

β̃ = X†
(
I − (V PN(XT ))

†V
)T

y . (1)

(b) β̃ ∈ R(XT ), and if β∗ is any other LUE in R(XT ),

Cov β∗
< Cov β̃ .
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Regularization

Let A ∈ Cm×n
r and let {u1, . . . ,ur} and {v1, . . . ,vr} be o.n. bases

of R(A∗) and R(A), respectively, related by,

Avi = σi ui , and A∗ui = σi vi , i ∈ 1, r .

Consider the equation
Ax = b (1)

where b ∈ R(A) is
b =

r∑

i=1

βivi .

The least–norm solution is

x = A†b =

r∑

i=1

βi

σi

ui (2)

and is sensitive to errors ε in the smaller singular values, as

seen from 1

σ + ε
≈

1

σ
−

1

σ2
ε +

1

σ3
ε2 + · · · (3)
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Regularization (cont’d)

Instead of (2), consider the approximate solution

x(λ) = (A∗A + λI)−1A∗b =
r∑

i=1

σi βi

σ2
i + λ

ui (4)

where λ is positive. It is less sensitive to errors in the singular

values, as shown by

(σ + ε)

(σ + ε)2 + λ
≈

σ

σ2 + λ
−

σ2 − λ

(σ2 + λ)2
ε +

σ(σ2 − 3λ)

(σ2 + λ)3
ε2 + · · · (5)

where the choice λ = σ2 gives

(σ + ε)

(σ + ε)2 + λ
≈

1

2σ
−

1

4σ3
ε2 + · · ·
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Ridge regression

Consider the linear model
y = Xβ + ε (1)

with X ∈ R
n×p
p (full column rank), and the error ε ∼ N(0, σ2 I).

If XT X is ill–conditioned, then the BLUE of β

β̂ =
(
XT X

)−1
XTy (2)

is unsatisfactory. To see this, consider the SVD of X ,

UT XV = Λ =




λ1

. . .

λp

0 · · · 0

.

.

.

.

.

.

0 · · · 0




,
where the singular values

are denoted by λi

(3)
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Ridge regression (cont’d)

The transformation

z := UT y , γ = V T β , ν = UT ε . (4)

takes the model (1) into

z = Λγ + ν (5)

where ν ∼ N(0, σ2I) (∵ V is orthogonal), and the parameters

to be estimated are γ = (γi) . The components zi of z are also

normal

zi ∼ N(λiγi, σ
2) , i ∈ 1, p , (6a)

zi ∼ N(0, σ2) , i ∈ p + 1, n . (6b)

For i ∈ 1, p, the BLUE of γi is

γ̂i =
zi

λi

, with variance Var γ̂i = E

(
zi

λi

− γi

)2

=
σ2

λ2
i

(7)
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Dropping the U out of the BLUE

The ridge regression estimator (abbreviated RRE) of β is

β̂(k) =
(
XT X + kI

)−1
XTy , (8)

where k is a positive parameter. The RRE is a family of estimators

{β̂(k) : k > 0}, parameterized by k. with the BLUE for k = 0.

For the transformed model (4), the RRE of γ is

γ̂(k) =
(
ΛT Λ + kI

)−1
ΛT z ,

and for i ∈ 1, p, γ̂i(k) =
λizi

λ2
i + k

. (9)

The RRE shrinks every component of the observation vector z.,

by a factor

c(λi, k) =
λi

λ2
i + k

, (10)
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The MSE of the RRE

If β∗ is an estimator of a parameter β, its

(a) bias is bias(β∗) = E β∗ − β, and its

(b) mean square error(MSE) is MSE(β∗) = E (β∗ − β)
2

which is equal to variance of β∗ if β∗ is unbiased.

The RRE (8) is biased, bias(γ̂(k)) = −k
(
ΛT Λ + kI

)−1
γ,

with bias(γ̂i(k)) = −k
γi

λ2
i + k

, i ∈ 1, p .

Var(γ̂i(k)) =
λ2

i σ
2

(λ2
i + k)2

,

MSE(γ̂(k)) =

p∑

i=1

λ2
i σ

2

(λ2
i + k)2

+

p∑

i=1

k2γ2
i

(λ2
i + k)2

=

p∑

i=1

λ2
i σ

2 + k2γ2
i

(λ2
i + k)2

. (11)
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An RRE with smaller MSE than the BLUE

MSE(γ̂(k)) =

p∑

i=1

λ2
i σ

2 + k2γ2
i

(λ2
i + k)2

. (11)

Theorem. There is a k > 0 for which the MSE of the RRE is

smaller than that of the BLUE,

MSE(β̂(k)) < MSE(β̂(0)) .

Proof. Let f(k) = RHS(11). We have to show that f is decreasing

at zero, i.e. f ′(0) < 0. This follows since

f ′(k) = 2

p∑

i=1

λ2
i (kγ2

i − σ2)

(λ2
i + k)3

. 2

An optimal RRE β̂(k∗) may be defined as corresponding to a

value k∗ where f(k) is minimum.
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