Lecture 9: Some Applications in Statistics

The linear statistical model

Given a random vector $\mathbf{x} = (\mathbf{x}_i)$ with expected value $\mathbf{E} \mathbf{x} = \boldsymbol{\mu} = (\boldsymbol{\mu}_i)$, its covariance matrix is

$$\operatorname{Cov} \mathbf{x} = \operatorname{E} \left\{ (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^T \right\} = \left[\operatorname{E} \left(\mathbf{x}_i - \boldsymbol{\mu}_i \right) (\mathbf{x}_j - \boldsymbol{\mu}_j) \right]$$

A linear statistical model is

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{1}$$

- $\mathbf{y} \in \mathbb{R}^n$ is **observed**, or measured in some experimental set-up,
- the **parameters** $\boldsymbol{\beta} \in \mathbb{R}^p$ are unknown,
- the matrix $X \in \mathbb{R}^{n \times p}$ (the **design matrix**) is given, and
- $\varepsilon \in \mathbb{R}^n$ is a random vector representing the **errors** of observing **y**, which are not systematic, i.e.,

$$\mathbf{E} \boldsymbol{\varepsilon} = \mathbf{0}$$
, $\operatorname{Cov} \boldsymbol{\varepsilon} = V^2$, assumed known. (2)

The linear statistical model (cont'd)

The story so far:

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{1}$$

$$\mathbf{E}\,\boldsymbol{\varepsilon} = \mathbf{0} , \ \mathrm{Cov}\,\boldsymbol{\varepsilon} = V^2 ,$$
 (2)

From (1)-(2) it follows that

$$E \mathbf{y} = X\boldsymbol{\beta}$$
, $Cov \mathbf{y} = V^2$. (3)

This model has several names, including: linear statistical model (or just linear model), linear regression and the Gauss–Markov model. We denote this model by $(\mathbf{y}, X\boldsymbol{\beta}, V^2)$.

The **problem**: estimate a **linear function** of the **parameters**, say

$$B\boldsymbol{\beta}$$
, for a given matrix $B \in \mathbb{R}^{m \times p}$, (4)

from the observed \mathbf{y} (the problem of estimating the variance V^2 , if unknown, is not treated here.)

The linear statistical model (cont'd)

A linear estimator (abbreviated LE) of $B\beta$ is

 $A\mathbf{y}$, for some $A \in \mathbb{R}^{m \times n}$. (5)

It is **unbiased** (abbreviated LUE) if

$$E \{A\mathbf{y}\} = B\boldsymbol{\beta}$$
, for all $\boldsymbol{\beta} \in \mathbb{R}^p$, (6)

and it is the **best linear unbiased estimator** (**BLUE**) if its variance is minimal, in some sense, among all LUE's. In general, not all linear functions have LUE's.

The function $B\beta$ is called **estimable** if it has an **LUE**, i.e., if there is a matrix $A \in \mathbb{R}^{m \times n}$ such that (6) holds.

The **unbiasedness condition** (6) reduces to an identity

 $AX\beta = B\beta$, for all β , or equivalently, AX = B, (7)

4 main cases of the model $(\mathbf{y}, X\boldsymbol{\beta}, V^2)$

There are 2 cases for the **design matrix** $X \in \mathbb{R}^{n \times p}_{r}$:

- (A) X is of full column rank (r = p), or
- (B) X is of rank r < p,

and 2 cases for the **covariance matrix** V^2 (which is PSD):

(1) V is nonsingular, i.e. V² is positive definite (PD), or
(2) V is singular.

giving 4 cases for the model, (A1), (B1), (A2) and (B2).

The simplest case is studied next.

X full column rank, V nonsingular

Consider the model $(\mathbf{y}, X\boldsymbol{\beta}, V^2)$ with V nonsingular, and the $n \times p$ matrix X is of full column rank, i.e., $R(X^T) = \mathbb{R}^p$.

Then any linear function $B\beta$ is estimable. In particular, for B = I the linear equation (7) reduces to AX = I, and we conclude that $A\mathbf{y}$ is an LUE of β whenever A is a left-inverse of X. The set of LUE's of β is therefore

LUE
$$(\boldsymbol{\beta}) = \{ X^{(1)} \mathbf{y} : X^{(1)} \in X\{1\} \} .$$

and the **minimum–norm LUE** of $\boldsymbol{\beta}$ is

$$\widehat{\boldsymbol{\beta}} = \left(X^T X\right)^{-1} X^T \mathbf{y} = X^{\dagger} \mathbf{y} .$$
(8)

Without loss of generality we can assume

$$V^2 = \sigma^2 I$$

i.e., the errors have equal variances and are uncorrelated.

The Gauss–Markov Theorem

Theorem. Consider the linear model $(\mathbf{y}, X\boldsymbol{\beta}, \sigma^2 I)$ with X of full column–rank. Then for any $B \in \mathbb{R}^{m \times p}$:

- (a) The linear function $B\beta$ is estimable.
- (b) The estimator $B\widehat{\boldsymbol{\beta}} = BX^{\dagger}\mathbf{y}$ is BLUE in the sense that

$$\operatorname{Cov} A\mathbf{y} \succeq \operatorname{Cov} B\widehat{\boldsymbol{\beta}} \tag{9}$$

for any other LUE $A\mathbf{y}$ of $B\boldsymbol{\beta}$. (c) The BLUE $B\hat{\boldsymbol{\beta}} = BX^{\dagger}\mathbf{y}$ belongs to the class of estimators

$$\mathcal{E}(X) := \{ A\mathbf{y} : A = KX^T , \text{ for some matrix } K \} .$$
(10)

If $A\mathbf{y}$ is any LUE in $\mathcal{E}(X)$ (i.e. the rows of A are in R(X)) then

$$A\mathbf{y} = B\widehat{\boldsymbol{\beta}}$$
 with probability 1. (11)

Proof

(a) was shown above.

(b) Let $A\mathbf{y}$ be any LUE of $B\boldsymbol{\beta}$. Then:

(b1) The covariance of $A\mathbf{y}$ is $\operatorname{Cov} A\mathbf{y} = \sigma^2 A A^T$.

(b2) The covariance of $B\hat{\boldsymbol{\beta}}$ is

$$\operatorname{Cov} B \left(X^{T} X \right)^{-1} X^{T} \mathbf{y} = \sigma^{2} B \left(X^{T} X \right)^{-1} B^{T}$$
$$= \sigma^{2} A X \left(X^{T} X \right)^{-1} X^{T} A^{T} , \quad (\because B = A X) .$$
$$\therefore \operatorname{Cov} A \mathbf{y} - \operatorname{Cov} B \widehat{\boldsymbol{\beta}} = \sigma^{2} A \left(I - X \left(X^{T} X \right)^{-1} X^{T} \right) A^{T} . \quad (12)$$

(c) The estimate $BX^{\dagger}\mathbf{y}$ is in $\mathcal{E}(X)$ since $X^{\dagger} = (X^T X)^{\dagger} X^T$. Then (11) follows from

$$\operatorname{RHS}(12) = \sigma^2 A P_{N(X^T)} A^T = O ,$$

if $A = KX^T$ for some K.

The Gauss-Markov Theorem for functionals

Consider the problem of estimating **linear functionals** $\langle \mathbf{b}, \boldsymbol{\beta} \rangle$. A linear estimate $\langle \mathbf{a}, \mathbf{y} \rangle$ is in the class $\mathcal{E}(X)$ if and only if $\mathbf{a} \in R(X^T)$. The G–M Theorem then reduces to:

Corollary. Let $(\mathbf{y}, X\boldsymbol{\beta}, \sigma^2 I)$ and X be of full column rank. Then for any $\mathbf{b} \in \mathbb{R}^p$:

- (a) The linear functional $\langle \mathbf{b}, \boldsymbol{\beta} \rangle$ is estimable.
- (b) The estimator $\langle \mathbf{b}, \widehat{\boldsymbol{\beta}} \rangle = \langle \mathbf{b}, BX^{\dagger} \mathbf{y} \rangle$ is BLUE in the sense that

$$\operatorname{Var} \langle \mathbf{a}, \mathbf{y} \rangle \geq \operatorname{Var} \langle \mathbf{b}, \widehat{\boldsymbol{\beta}} \rangle$$

for any other LUE $\langle \mathbf{a}, \mathbf{y} \rangle$ of $\langle \mathbf{b}, \widehat{\boldsymbol{\beta}} \rangle$.

(c) If $\langle \mathbf{a}, \mathbf{y} \rangle$ is any LUE of $\langle \mathbf{b}, \widehat{\boldsymbol{\beta}} \rangle$ with $\mathbf{a} \in R(X^T)$ then $\langle \mathbf{a}, \mathbf{y} \rangle = \langle \mathbf{b}, \widehat{\boldsymbol{\beta}} \rangle$ with probability 1.

The general $(\mathbf{y}, X\boldsymbol{\beta}, V^2)$

Theorem (Generalized Gauss–Markov Theorem). Let $(\mathbf{y}, X\boldsymbol{\beta}, V^2)$ be a linear model, and let $\langle \mathbf{b}, \boldsymbol{\beta} \rangle$ be any estimable functional. Then:

(a) $\langle \mathbf{b}, \boldsymbol{\beta} \rangle$ has a unique BLUE $\langle \mathbf{b}, \boldsymbol{\widetilde{\beta}} \rangle$ where

$$\widetilde{\boldsymbol{\beta}} = X^{\dagger} \left(I - (V P_{N(X^T)})^{\dagger} V \right)^T \mathbf{y} .$$
(1)

(b) $\widetilde{\boldsymbol{\beta}} \in R(X^T)$, and if $\boldsymbol{\beta}^*$ is any other LUE in $R(X^T)$, $\operatorname{Cov} \boldsymbol{\beta}^* \succeq \operatorname{Cov} \widetilde{\boldsymbol{\beta}}$.

Regularization

Let $A \in \mathbb{C}_r^{m \times n}$ and let $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ be o.n. bases of $R(A^*)$ and R(A), respectively, related by,

$$A \mathbf{v}_i = \sigma_i \mathbf{u}_i$$
, and $A^* \mathbf{u}_i = \sigma_i \mathbf{v}_i$, $i \in \overline{1, r}$.

Consider the equation

$$A\mathbf{x} = \mathbf{b} \tag{1}$$

where $\mathbf{b} \in R(A)$ is

$$\mathbf{b} = \sum_{i=1} \beta_i \mathbf{v}_i \; .$$

r

The least-norm solution is

$$\mathbf{x} = A^{\dagger} \mathbf{b} = \sum_{i=1}^{r} \frac{\beta_i}{\sigma_i} \mathbf{u}_i \tag{2}$$

and is **sensitive** to errors ε in the smaller singular values, as seen from $\frac{1}{\sigma + \varepsilon} \approx \frac{1}{\sigma} - \frac{1}{\sigma^2}\varepsilon + \frac{1}{\sigma^3}\varepsilon^2 + \cdots$ (3)

Regularization (cont'd)

Instead of (2), consider the **approximate solution**

$$\mathbf{x}(\lambda) = (A^*A + \lambda I)^{-1}A^*\mathbf{b} = \sum_{i=1}^r \frac{\sigma_i \beta_i}{\sigma_i^2 + \lambda} \mathbf{u}_i$$
(4)

where λ is positive. It is **less sensitive** to errors in the singular values, as shown by

$$\frac{(\sigma+\varepsilon)}{(\sigma+\varepsilon)^2+\lambda} \approx \frac{\sigma}{\sigma^2+\lambda} - \frac{\sigma^2-\lambda}{(\sigma^2+\lambda)^2}\varepsilon + \frac{\sigma(\sigma^2-3\lambda)}{(\sigma^2+\lambda)^3}\varepsilon^2 + \cdots$$
(5)

where the choice $\lambda = \sigma^2$ gives

$$\frac{(\sigma+\varepsilon)}{(\sigma+\varepsilon)^2+\lambda} \approx \frac{1}{2\sigma} - \frac{1}{4\sigma^3}\varepsilon^2 + \cdots$$

Ridge regression

Consider the **linear model**

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{1}$$

with $X \in \mathbb{R}_p^{n \times p}$ (full column rank), and the error $\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$. If $X^T X$ is **ill–conditioned**, then the **BLUE** of $\boldsymbol{\beta}$

$$\widehat{\boldsymbol{\beta}} = \left(X^T X\right)^{-1} X^T \mathbf{y} \tag{2}$$

is unsatisfactory. To see this, consider the **SVD** of X,

$$U^{T}XV = \Lambda = \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{p} \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}, \quad \text{where the singular values} \quad (3)$$

Ridge regression (cont'd)

The transformation

$$\mathbf{z} := U^T \mathbf{y} , \ \boldsymbol{\gamma} = V^T \boldsymbol{\beta} , \ \boldsymbol{\nu} = U^T \boldsymbol{\varepsilon} .$$
 (4)

takes the model (1) into

$$\mathbf{z} = \Lambda \boldsymbol{\gamma} + \boldsymbol{\nu} \tag{5}$$

where $\boldsymbol{\nu} \sim N(\mathbf{0}, \sigma^2 I)$ (:: *V* is **orthogonal**), and the **parameters** to be **estimated** are $\boldsymbol{\gamma} = (\gamma_i)$. The components z_i of \mathbf{z} are also normal

$$z_i \sim N(\lambda_i \gamma_i, \sigma^2) , \quad i \in \overline{1, p} ,$$
 (6a)

$$z_i \sim N(0, \sigma^2)$$
, $i \in \overline{p+1, n}$. (6b)

For $i \in \overline{1, p}$, the BLUE of γ_i is

$$\widehat{\gamma}_i = \frac{z_i}{\lambda_i}$$
, with variance $\operatorname{Var} \widehat{\gamma}_i = \operatorname{E} \left(\frac{z_i}{\lambda_i} - \gamma_i\right)^2 = \frac{\sigma^2}{\lambda_i^2}$ (7)

Dropping the U out of the BLUE

The ridge regression estimator (abbreviated RRE) of β is

$$\widehat{\boldsymbol{\beta}}(k) = \left(X^T X + kI\right)^{-1} X^T \mathbf{y} , \qquad (8)$$

where k is a positive parameter. The RRE is a family of estimators $\{\widehat{\boldsymbol{\beta}}(k): k > 0\}$, parameterized by k. with the BLUE for k = 0. For the transformed model (4), the RRE of $\boldsymbol{\gamma}$ is

$$\widehat{\gamma}(k) = \left(\Lambda^T \Lambda + kI\right)^{-1} \Lambda^T \mathbf{z} ,$$

and for $i \in \overline{1, p}$, $\widehat{\gamma}_i(k) = \frac{\lambda_i z_i}{\lambda_i^2 + k} .$ (9)

The RRE **shrinks** every component of the observation vector **z**., by a **factor**

$$c(\lambda_i, k) = \frac{\lambda_i}{\lambda_i^2 + k} , \qquad (10)$$

The MSE of the RRE

If $\boldsymbol{\beta}^*$ is an estimator of a parameter $\boldsymbol{\beta}$, its

- (a) **bias** is $bias(\beta^*) = E\beta^* \beta$, and its
- (b) mean square error(MSE) is $MSE(\beta^*) = E (\beta^* \beta)^2$ which is equal to variance of β^* if β^* is unbiased. The RRE (8) is biased, $bias(\widehat{\gamma}(k)) = -k (\Lambda^T \Lambda + kI)^{-1} \gamma$, with $bias(\widehat{\gamma}_i(k)) = -k \frac{\gamma_i}{\lambda^2 + k}, \quad i \in \overline{1, p}$.

$$\operatorname{Var}(\widehat{\gamma_{i}}(k)) = \frac{\lambda_{i}^{2}\sigma^{2}}{(\lambda_{i}^{2}+k)^{2}},$$

$$\operatorname{MSE}(\widehat{\gamma}(k)) = \sum_{i=1}^{p} \frac{\lambda_{i}^{2}\sigma^{2}}{(\lambda_{i}^{2}+k)^{2}} + \sum_{i=1}^{p} \frac{k^{2}\gamma_{i}^{2}}{(\lambda_{i}^{2}+k)^{2}}$$

$$= \sum_{i=1}^{p} \frac{\lambda_{i}^{2}\sigma^{2}+k^{2}\gamma_{i}^{2}}{(\lambda_{i}^{2}+k)^{2}}.$$
(11)

An RRE with smaller MSE than the BLUE

$$MSE(\widehat{\boldsymbol{\gamma}}(k)) = \sum_{i=1}^{p} \frac{\lambda_i^2 \sigma^2 + k^2 \gamma_i^2}{(\lambda_i^2 + k)^2} .$$
(11)

Theorem. There is a k > 0 for which the MSE of the RRE is smaller than that of the BLUE,

$$MSE(\widehat{\boldsymbol{\beta}}(k)) < MSE(\widehat{\boldsymbol{\beta}}(0))$$
.

Proof. Let f(k) = RHS(11). We have to show that f is decreasing at zero, i.e. f'(0) < 0. This follows since

$$f'(k) = 2\sum_{i=1}^{p} \frac{\lambda_i^2 (k\gamma_i^2 - \sigma^2)}{(\lambda_i^2 + k)^3} .$$

An **optimal RRE** $\hat{\boldsymbol{\beta}}(k^*)$ may be defined as corresponding to a value k^* where f(k) is minimum.