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Abstract

Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from
1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The
submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′].

For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1 to those of A:

detA−1[β, α] = (−1)
∑k

i=1
αi+

∑k

i=1
βi

detA[α′, β′]
detA

for any α, β ∈ Qk,n.
We generalize Jacobi’s identity to matrices A ∈ IRm×n

r , expressing the minors of the Moore-Penrose inverse
A† in terms of the minors of the maximal nonsingular submatrices AIJ of A. In our notation,

detA†[β, α] =
1

vol 2A

∑

(I,J)∈N (α, β)
detAIJ

∂

∂|Aαβ | |AIJ |,

for any α ∈ Qk,m , β ∈ Qk,n , 1 ≤ k ≤ r, where vol 2A denotes the sum of squares of determinants of r × r
submatrices of A. This represents the k× k minors of A† as a convex combination of the minors of A. The weights
of this combination are, surprisingly, the same for all k.

We apply our results to questions concerning the nonnegativity of principal minors of the Moore-Penrose inverse.
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1 Introduction

If the matrix A ∈ IRn×n is nonsingular, then the adjoint for-
mula for its inverse

A−1 =
1

detA
adjA, (1.1)

has a well-known generalization, the Jacobi identity, which
relates the minors of A−1 to those of A.

Denote the set of strictly increasing sequences of k elements
from 1, . . . , n, by

Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} (1.2)

For α, β ∈ Qk,n , denote by:
A[α, β] the submatrix of A having row indices α and column

indices β,
A[α′, β′] the submatrix obtained from A by deleting rows

indexed by α and columns indexed by β.
Then the Jacobi identity (see [7]) is: For any α, β ∈ Qk,n ,

detA−1[β, α] = (−1)s(α)+s(β) detA[α′, β′]
detA

, (1.3)

where s(α) is the sum of the integers in α. By convention,

detA[∅, ∅] = 1. (1.4)

For A ∈ IRm×n
r , Moore [11] gave a determinantal formula

for the entries of the Moore-Penrose inverse A†, a formula
recently rediscovered by Berg [4]. The result was further gen-
eralized to matrices defined over an integral domain [1]. We
consider here the minors of A†, for A ∈ IRm×n

r . Theorem 1
(in § 2) expresses them in terms of the minors of the maxi-
mal nonsingular submatrices AIJ of A. A numerical example
is given in §3. Theorem 2 (in § 4) is a somewhat surprising
result: Every minor of A† is the same convex combination
of the corresponding minors of inverses of the AIJ ’s. This
generalizes Berg’s representation [4] of A† as a convex com-
bination of the AIJ ’s. Section 5 deals with the nonnegativity
of principal minors of the Moore-Penrose inverse, extending
some previous results of Mohan, Neumann and Ramamurthy
[10], [12].

We use the following notation. For any index sets I, J ,
let AI∗, A∗J , AIJ denote the submatrices of A lying in rows
indexed by I, in columns indexed by J , and in their intersec-
tion, respectively. The principal submatrix AJJ is denoted by
AJ . For A ∈ IRm×n

r , let

I(A) = {I ∈ Qr,m : rank AI∗ = r},
J (A) = {J ∈ Qr,n : rank A∗J = r},
N (A) = {(I, J) ∈ Qr,m ×Qr,n : rank AIJ = r},

be the index sets of maximal sets of linearly independent rows
and columns, and of maximal nonsingular submatrices, re-
spectively. For α ∈ Qk,m , β ∈ Qk,n let

I(α) = {I ∈ I(A) : α ⊆ I},

J (β) = {J ∈ J (A) : β ⊆ J},
N (α, β) = {(I, J) ∈ N (A) : α ⊆ I, β ⊆ J}.

Then by [2]
N (A) = I(A)× J (A),

and therefore,

N (α, β) = I(α)× J (β). (1.5)

For α = (α1, . . . , αk) and β = (β1, . . . , βk), we denote by

A[β ← Iα] (1.6)

the matrix obtained from A by replacing the βi
th column with

the unit vector eαi
, (i = 1, . . . , k), and by

A[β ← 0] (1.7)

the matrix obtained from A by replacing the βi
th column with

the zero vector 0, (i = 1, . . . , k).
Finally, the coefficient (−1)s(α)+s(β) det A[α′, β′], of

detA[α, β] in the Laplace expansion of detA is denoted by

∂

∂|Aαβ | |A| . (1.8)

Using the above notation we rewrite (1.8) as

∂

∂|Aαβ | |A| = (−1)s(α)+s(β) detA[α′, β′] = det A[β ← Iα] ,

(1.9)
and the Jacobi identity as

detA−1[β, α] =
det A[β ← Iα]

detA
, (1.10)

=
1

det AT A
detAT ·A[β ← Iα] .(1.11)

As in [2], we define the volume of the m× n matrix A by,

volA =
√√√√

∑

(I, J)∈N (A)
det2AIJ , (1.12)

and in particular,

volA =
√

det(AT A), if A has full column rank. (1.13)

The following lemma is used in the sequel:

Lemma 1 (Blattner, [6]) Let A ∈ IRm×n
r , and let U ∈

IRm×(m−r) and V ∈ IRn×(n−r) be matrices whose columns
form orthonormal bases of N(AT ) and N(A), respectively.
Then

B =
(

A U
V T O

)
(1.14)

is nonsingular, and its inverse is

B−1 =
(

A† V
UT O

)
2

(1.15)
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If A has full column [row] rank, then V [U ] is vacant. More-
over, by [2],

detBT B = vol 2A . (1.16)

2 Minors of the Moore–Penrose
inverse

Theorem 1 Let A ∈ IRm×n
r , and 1 ≤ k ≤ r. Then for any

α ∈ Qk,m , β ∈ Qk,n ,

detA†[β, α] =





0, if N (α, β) = ∅ ,

1
vol 2A

∑
(I,J)∈N (α, β)

detAIJ
∂

∂|Aαβ | |AIJ |

otherwise .
(2.1)

Proof. Let B, U, V be as in Lemma 1. Then

detA†[β, α] = det B−1[β, α], by Lemma 1,

=
1

detBT B
detBT ·B[β ← Iα] , (2.2)

by (1.11). Now det BT ·B[β ← Iα] =

= det
(

AT V
UT O

)(
A[β ← Iα] U
V T [β ← 0] O

)

= det(AT , V )
(

A[β ← Iα]
V T [β ← 0]

)

=
∑

I∈I(A)
det((AT )∗I , V ) det

(
A[β ← Iα]I∗
V T [β ← 0]

)

=
∑

I∈I(α)
det((AI∗)T , V ) det

(
AI∗[β ← Iα]
V T [β ← 0]

)
(2.3)

The penultimate equality is by the Cauchy-Binet formula,
noting that the determinant of any n × n submatrix of
(AT , V ) ∈ IRn×(m+n−r) is zero if it consists of more than
r columns of AT . The last equality holds since the ma-

trix
(

A[β ← Iα]I∗
V T [β ← 0]

)
has at least one column of zeros, if

I 6∈ I(α).
We assume now (and prove later) that for any fixed I ∈

I(α) ,

det((AI∗)T , V ) det
(

AI∗[β ← Iα]
V T [β ← 0]

)
=

=
∑

J∈J (β)
det AIJ detAIJ [β ← Iα] . (2.4)

Then using (1.16) and (2.3), (2.2) becomes

detA†[β, α] =

=
1

vol 2A

∑

I∈I(α)

∑

J∈J (β)
det AIJ det AIJ [β ← Iα] (2.5)

=
1

vol 2A

∑

(I, J)∈N (α, β)
detAIJ

∂

∂|Aαβ | |AIJ | , (2.6)

by (1.9). Finally we prove (2.4). For any fixed I ∈ I(α), the
columns of V form also an orthonormal basis of N(AI∗). Let

L =
(

AI∗
V T

)
(2.7)

Then

det(AI∗)†[β, α] =

= det L−1[β, α] , by Lemma 1,

=
1

detLLT
det LT · L[β ← Iα] , by (1.11),

=
1

vol 2AI∗
det((AI∗)T , V ) det

(
AI∗[β ← Iα]
V T [β ← 0]

)
.(2.8)

Writing (AI∗)T = C, so that,

det(AI∗)†[β, α] = det(C†)T [β, α] ,

= det C†[α, β] , (2.9)

we take W to be a matrix whose columns form an orthonormal
basis of N(CT ), and denote,

M = (C, W ) . (2.10)

Then (2.9) becomes, by Lemma 1 and (1.11),

det(AI∗)†[β, α] =

=
1

det MT M
det MT ·M [α ← Iβ ] ,

=
1

vol 2AI∗
detAI∗ · (AI∗)T [α ← Iβ ] ,

=
1

vol 2AI∗

∑

J∈J (β)
det AIJ det(AIJ)T [α ← Iβ ] ,

=
1

vol 2AI∗

∑

J∈J (β)
det AIJ detAIJ [β ← Iα] (2.11)

The penultimate equality is by the Cauchy-Binet for-
mula, noting that, if J 6∈ J (β), then the submatrix of
(AI∗)T [α ← Iβ ] whose rows are indexed by J has at least one
column of zeros. Finally, (2.4) follows by comparing (2.8) and
(2.11). 2

Note that N (α, β) = ∅ is equivalent to linear dependence
of either the columns of A∗β or the rows of Aα∗.

As a special case, if α = I ∈ I(A), β = J ∈ J (A), then
N (α, β) contains only one element, i.e., (I, J). Now Theo-
rem 1 gives the identity, [2],

det(A†)JI =
1

vol 2A
det AIJ , ∀(I, J) ∈ N (A) . (2.12)
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3 Example

Consider the 4× 4 matrix A of rank 3,

A =




1 0 3 0
0 −2 0 1
1 0 2 0
0 0 −1 0


 ,

and its Moore-Penrose inverse A†,

A† =
1
15




−5 0 20 25
0 −6 0 0
5 0 −5 −10
0 3 0 0




A list of the 3 × 3 nonsingular submatrices of A and their
determinants is as follows :

I J AIJ detAIJ

1, 2, 3 1, 2, 3




1 0 3
0 −2 0
1 0 2


 2

1, 2, 3 1, 3, 4




1 3 0
0 0 1
1 2 0


 1

1, 2, 4 1, 2, 3




1 0 3
0 −2 0
0 0 −1


 2

I J AIJ detAIJ

1, 2, 4 1, 3, 4




1 3 0
0 0 1
0 −1 0


 1

2, 3, 4 1, 2, 3




0 −2 0
1 0 2
0 0 −1


 −2

2, 3, 4 1, 3, 4




0 0 1
1 2 0
0 −1 0


 −1

The volume of A is given by

vol 2A = 22 + 1 + 22 + 1 + 22 + 1 = 15

Take now α = {2, 3} and β = {1, 4}. Then N (α, β) = I(α)×
J (β) = {I1, I2} × {J}, where I1 = {1, 2, 3}, I2 = {2, 3, 4},
and J = {1, 3, 4}. We calculate

∂

∂|Aαβ | |AI1J | = (−1)(2+3)+(1+3) 3 = −3,

and
∂

∂|Aαβ | |AI2J | = (−1)(1+2)+(1+3)(−1) = 1.

Now from (2.1)

detA†[β, α] =
1
15

(1× (−3) + (−1)× 1) = − 4
15

.

4 Convex decomposition of a
matrix and its minors

Berg [4] proved that the Moore-Penrose inverse of A ∈ IRm×n
r

is a convex combination of ordinary inverses of r × r subma-
trices

A† =
∑

(I,J)∈N (A)
λIJ Â−1

IJ (4.1)

where each Â−1
IJ is an n ×m matrix with the inverse of AIJ

in position (J, I) and zeros elsewhere, and

λIJ =
det2 AIJ

vol 2A
(4.2)

By summing (4.1) over I ∈ I(A), one obtains A† as a con-
vex combination of the Moore–Penrose inverses of maximal
full column-rank submatrices A∗J , see [2],

A† =
∑

J∈J (A)
λ∗J Â†∗J , (4.3)

where the convex weights are

λ∗J =
vol 2A∗J
vol 2A

, (4.4)

and Â†∗J is an n ×m matrix with A†∗J in rows indexed by J
and zeros elsewhere.

Similarly, summing (4.1) over J ∈ J (A) gives

A† =
∑

I∈I(A)
λI∗ Â†I∗ (4.5)

with convex weights

λI∗ =
vol 2AI∗
vol 2A

. (4.6)

and Â†I∗ the n×m matrix with A†I∗ in columns indexed by I
and zeros elsewhere.

Theorem 1 allows a stronger claim than (4.1), i. e. , every
minor of A† in position (β, α) is the same convex combination

of the minors of Â−1
IJ ’s in the corresponding position:
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Theorem 2 Let A ∈ IRm×n
r , and 1 ≤ k ≤ r. Then for any

α ∈ Qk,m , β ∈ Qk,n ,

detA†[β, α] =
∑

(I,J)∈N (A)
λIJ det Â−1

IJ [β, α] . (4.7)

Proof. From Theorem 1, it follows that

detA†[β, α] =
∑

(I, J)∈N (α, β)

det2 AIJ

vol 2A
· detAIJ [β ← Iα]

detAIJ
,

=
∑

(I,J)∈N (α, β)
λIJ det Â−1

IJ [β, α] ,

by (1.10). We prove (4.7) by showing that the sum over
N (α, β) is the same as the sum over the larger set N (A).
Indeed, if (I, J) ∈ N (A), and either I 6∈ I(α) or J 6∈ J (β) ,

then there is at least one column, or row, of zeros in Â−1
IJ [β, α],

thus det Â−1
IJ [β, α] = 0. 2

Using the same argument we can show that summing (4.7)
over I ∈ I(α) gives the same sum as summing over I ∈ I(A).
Similarly, summing over J ∈ J (β) and over J ∈ J (A) give
the same result. We summarize these observations in:

Corollary 1 Let A ∈ IRm×n
r , and 1 ≤ k ≤ r. Then, for any

α ∈ Qk,m , β ∈ Qk,n ,

detA†[β, α] = 0 , if J (β) = ∅ or I(α) = ∅ ,
(4.8)

and otherwise,

detA†[β, α] =

=
∑

J∈J (A)
λ∗J det Â†∗J [β, α] =

∑

J∈J (β)
λ∗J det A†∗J [β, α] ,

(4.9)

=
∑

I∈I(A)
λI∗ det Â†I∗[β, α] =

∑

I∈I(α)
λI∗ detA†I∗[β, α] .

2 (4.10)

By applying Berg’s formula to A†, it follows from (2.12) that
the same weights appear in the convex decomposition of A
into ordinary inverses of the submatrices (A†)JI ,

A =
∑

(I,J)∈N (A)
λIJ

̂(A†)−1
JI , (4.11)

where ̂(A†)−1
JI is the m × n matrix with the inverse of the

(J, I)th submatrix of A† in position (I, J) and zeros elsewhere.
Finally applying (4.7) to A†, we establish a remarkable

property of the convex decomposition (4.11) of A: Every mi-
nor of A is the same convex combination of the minors of̂(A†)−1

JI ’s.

Theorem 3 Let A ∈ IRm×n
r , r > 0. Then there is a convex

decomposition of A

A =
∑

(I,J)∈N (A)
λIJ BIJ (4.12)

such that for all k = 1, . . . , r, and for every α ∈ Qk,m , β ∈
Qk,n,

detA[α, β] =
∑

(I,J)∈N (A)
λIJ detBIJ [α, β] (4.13)

where BIJ is an m×n matrix with a r×r nonsingular matrix
in position (I, J), zeros elsewhere. 2

5 Nonnegativity of principal minors
of the Moore-Penrose inverse

Let P [P0] denote the real n×n matrices with positive [non-
negative] principal minors. We study conditions under
which the Moore-Penrose inverse of a matrix is a P0-matrix.

If A is nonsingular, then it is immediate from (1.3) that
A ∈ P if and only if A† = A−1 ∈ P. If A ∈ IRn×n

r , then by
(2.12) it is necessary A† ∈ P0 that detAJ ≥ 0, ∀J ∈ Qr,n . It
is known that A ∈ P0 does not imply A† ∈ P0. Mohan, Neu-
mann and Ramamurthy [10] proved that the Moore-Penrose
inverse of a singular irreducible M -matrix is a P0-matrix (an
M -matrix is a P0-matrix with nonpositive off-diagonal ele-
ments). Ramamurthy and Mohan [12] extended the above
result to n×n M -matrices of rank n−1 (the rank of any sin-
gular irreducible n × n M -matrix is n − 1, see [5]). However
for an n × n M -matrix A of rank less than n − 1, A† is not
necessarily in P0, see [8].

We apply here our representation of minors, to give a direct
proof for the result of [12], and generalize to the class of
(n − r)th compound M -matrices of rank r, a class including
M -matrices of rank n− 1. We show that if A ∈ P0, and A is
a (n− r)th compound M -matrix of rank r, then A† ∈ P0.

For any n×n matrix A, the kth compound matrix Ck(A)

is an
(

n
k

)
×

(
n
k

)
matrix whose elements are determinants

of all k×k submatrices of A in lexicographic order. We call a
matrix kth compound M-matrix if its kth compound matrix
is an M -matrix. The kth supplementary compound of A
is defined by, see [9, p.42],

Ck(A) =
(
(−1)s(α)+s(β) detA[α′, β′]

)
, α, β ∈ Qk,n .

(5.1)
Note that the (α, β)th element of Ck(A) is

(−1)s(α)+s(β) detA[α′, β′] = det A[β ← Iα] . (5.2)

In particular, for k = 1,

C1(AT ) = adj(A) . (5.3)
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Some facts about M -matrices are collected below:

Lemma 2 ([5]) If A is an M -matrix, then
(a) any principal submatrix of A is also an M -matrix,
(b) adj (A) ≥ 0,
(c) there exist a nonnegative matrix B and a number s ≥ ρ(B)
such that A = sI −B, where ρ(B)

is the spectral radius of B,
(d) A−1 ≥ 0 if A is nonsingular. 2

Theorem 4 (Ramamurthy and Mohan, [12])
If A ∈ IRn×n

n−1 is an M -matrix, then A† ∈ P0.
Proof. For any permutation matrix P , if Ã = PAPT , then
(Ã)† = PA†PT . Moreover, Ã is also an M -matrix. It there-
fore suffices to show the nonnegativity of leading principal
minors,

detA†[α, α] ≥ 0 ,

for any α = {1, 2, . . . , k}, 1 ≤ k ≤ n− 1. By Theorem 1,

detA†[α, α] =
1

vol 2A

∑

(I, J)∈N (α, α)
det AIJ detAIJ [α′, α′] ,

so enough to show that

detAIJ detAIJ [α′, α′] ≥ 0 for any (I, J) ∈ N (α, α) . (5.4)

Since rank A = n− 1, there are i, j such that

I = N\{i} , and J = N\{j}
where N = {1, 2, . . . , n}. From Lemma 2(b)

(−1)i+j det AIJ ≥ 0 . (5.5)

Similarly, AIJ [α′, α′] is the submatrix of the principal sub-
matrix A[α′, α′] lying in rows indexed by I\α and in columns
indexed by J\α. Then by Lemma 2(a),(b),

(−1)(i−k)+(j−k) det AIJ [α′, α′] ≥ 0 ,

which, together with (5.5), implies (5.4). 2

Theorem 5 Let A ∈ IRn×n
r . If Cn−r(AJ) ≥ 0, ∀J ⊆ N,

|J | ≥ n− r, then A† ∈ P0.

Proof. For any α ∈ Qk,n, 1 ≤ k ≤ r,

detA†[α, α] =
1

vol 2A

∑

(I, J)∈N (α, α)
detAIJ detAIJ [α ← Iα] .

(5.6)
From Cn−r(A) ≥ 0, we have

(−1)s(I′)+s(J ′) detAIJ ≥ 0 , (5.7)

where I ′ = N\I, and J ′ = N\J . For (I, J) ∈ N (α, α), let

A[α, J ′ ← Iα,I′ ] , (5.8)

denote the matrix obtained from A by replacing the αi
th col-

umn with the unit vector eαi , i = 1, . . . , |α|, and replacing
the (j′t)th column with the unit vector ei′t , t = 1, . . . , n − r.
Then

detAIJ [α ← Iα] =

= (−1)s(I′)+s(J ′) det A[α, J ′ ← Iα,I′ ] ,

= (−1)s(I′)+s(J ′) det AN\α[J ′ ← II′ ] . (5.9)

Now from Cn−r(AN\α) ≥ 0 it follows, using (5.2), that

detAN\α[J ′ ← II′ ] ≥ 0 , (5.10)

which together with (5.7) and (5.9), implies

det AIJ detAIJ [α ← Iα] ≥ 0 , ∀ (I, J) ∈ N (α, α) . 2

Theorem 6 Let A ∈ IRn×n
r be a P0-matrix. If A is a (n−r)th

compound M -matrix,
n− r ≤ r < n, then A† ∈ P0.

Proof. Since Cn−r(AT ) = Cn−r(A)T , Cn−r(AT ) is a singular
M -matrix. By Lemma 2(c) there is a nonnegative matrix B
such that

Cn−r(AT ) = ρ(B)I −B (5.11)

Suppose B is positive. From the Laplace expansion theorem

Cn−r(AT )Cn−r(A) = (det A) I (5.12)

it follows that every nonzero column of Cn−r(A) is an eigen-
vector of B corresponding to ρ(B). By the Perron The-
orem, there is only one eigenvector with positive elements
corresponding to ρ(B), therefore in each nonzero column of
Cn−r(A) all elements are nonzero and have the same sign.
The same is true for the rows of Cn−r(A) by applying the ar-
gument to AT . Thus all elements of Cn−r(A) have the same
sign. Since A is a P0-matrix, Cn−r(A) is positive.

Suppose B is only nonnegative, then B can be expressed as
B = lim

m→∞
Bm, where Bm is positive. By a limiting process,

we have
Cn−r(A) ≥ 0 (5.13)

Now for any J ⊆ N, |J | ≥ n − r, Cn−r(AJ) is a principal
submatrix of Cn−r(A), so it is also an M -matrix. If AJ is non-
singular, so is Cn−r(AJ), and from (5.12) and Lemma 2(d),

Cn−r(AJ) = (det AJ)
(
Cn−r(AT

J )
)−1 ≥ 0 . (5.14)

If AJ is singular, then by the limiting argument,

Cn−r(AJ ) ≥ 0 . (5.15)

The theorem follows from Theorem 5. 2

Theorem 4 is a special case of Theorem 6, for which r = n−1.
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Example 1 The following is an example of a 4×4 P0-matrix
of rank 2 whose 2nd compound matrix is an M -matrix. Let

A =




2 1 −1 0
1 2 −2 0

−1 −2 2 0
0 0 0 0


 . (5.16)

Then A is a P0-matrix of rank 2, and

C2(A) =




3 −3
−3 3 O

O O


 ∈ IR6×6 (5.17)

is an M -matrix. The Moore-Penrose inverse of A

A† =
1
6




4 −1 1 0
−1 1 −1 0

1 −1 1 0
0 0 0 0


 (5.18)

is also a P0-matrix.
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