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Abstract: Markov decision processes are solved recursively, using the Bellman
optimality principle,

(A) V (s, t) := max
a∈A(s)

{
r(s, a) + α

∑
j∈S

ps,j(a) V (j, t + 1)

}

where V (s, t) is the optimal value of state s at stage t, r(s, a) is the instantaneous
profit from action a at state s, S is the state space, A(s) the set of feasible
actions at state s and pi,j(a) the transition probabilities from i to j. This
solution maximizes the expected value of the discounted sum of future profits
(the right side of (A)), and assumes risk neutrality, i.e. the decision maker is
indifferent between a random variable and its expected value.

We propose an alternative solution, with explicit modeling of risk, using the
recursion

(B) V (s, t) := max
a∈A(s)

{
r(s, a) + αSβ(V (Z(s, a), t + 1))

}
where Z(s, a) is the next state, Sβ is the quadratic certainty equivalent

Sβ(X) := EX− β

2
VarX

and β is a parameter modeling the attitude of the decision maker towards risk:
β > 0 if risk-averse, β < 0 if risk seeking and β = 0 if risk-neutral (in which
case (B) reduces to (A)).

We apply our model to solve two problems of maintenance and inventory
and compare with the classical solution.
Key words: Decision-making under uncertainty. Certainty equivalents. Risk
aversion. Dynamic programming. Markov decision process.
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1 INTRODUCTION

We use the following notation for a Markov Decision Process (MDP)

T the number of stages (assumed finite)
S state space (discrete)
st the state at the beginning of stage t = 1, · · · , T
s1 the initial state, given
A(s) action set (finite) for each state s ∈ S
at the action taken at stage t = 1, · · · , T
r(s, a) the stage return from state s and action a
pij(a) the transition probabilities (from i to j, depending on the action a)
α the discount factor
V (s, t) the optimal value (OV) function in stage t with state s ∈ S.

The MDP is solved recursively, using Bellman’s optimality principle, as follows

V (st, t) := max
a∈A(st)

r(st, a) + α
∑
j∈S

pst,j(a) V (j, t + 1)

 (1.1a)

st ∈ S , t = 1, · · · , T

V (sT+1, T + 1) := the salvage value of the terminal state , (1.1b)

and the maximizing a∗t give the optimal policy {a∗t : t = 1, · · · , T}.
The recursion (1.1a) can be written as

V (st, t) := max
a∈A(st)

{
r(st, a) + αEV (Z(st, a), t + 1)

}
, t = 1, · · · , T (1.2)

where Z(st, a), the next state, is a random variable (RV). The OV function
V (Z(st, a), t + 1), in the RHS of (1.2), is random through its argument. It is
replaced, in this computation, by its expected value EV (Z(st, a), t + 1). An
optimal policy obtained from (1.1) is therefore risk–neutral (indifferent between
a RV and its expected value), unless some other risk–attitude is implicit in the
return functions r(s, a).

We propose here an alternative formulation of the MDP, with explicit mod-
eling of risk–attitude. The classical model (1.1) is a special case of our model,
corresponding to risk–neutrality.

We replace (1.2) by

V (st, t) := max
a∈A(st)

{
r(st, a) + αS(V (Z(st, a), t + 1))

}
, t = 1, · · · , T (1.3)

where S(X) is a certainty equivalent of the RV X in question, see Ap-
pendix A for explanation and justification of (1.3). We use here the quadratic
certainty equivalent

Sβ(X) := EX− β

2
VarX (1.4)
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with β a risk parameter, increasing with risk aversion. The case β = 0
corresponds to the customary (risk-neutral) recursion (1.3), and β > 0 [β <
0] gives risk averse [risk seeking] behavior. The parameter β is assumed
sufficiently small so that U(x) = x− β

2 x2 is increasing throughout the support
of X.

A corresponding certainty equivalent of a random stream X = (X1 , · · · , XT )
is

S{β1,··· ,βT }(X) :=
T∑

t=1

αt−1 Sβt
(Xt) (1.5a)

=
T∑

t=1

αt−1

{
EXt −

βt

2
VarXt

}
(1.5b)

where the βt allow modeling different risk attitudes in different stages. If all
βt = β we denote (1.5a) by

Sβ(X) :=
T∑

t=1

αt−1 Sβ(Xt) (1.6)

Using the certainty equivalent (1.4), the recursion (1.3) is about as easy to
compute as (1.1a). However, the optimal policy obtained by (1.3) reflects the
risk–attitude of the certainty equivalent S(·), and is in general different than
the optimal policy of (1.1).

We illustrate this for a class of MDP’s where the optimal policies are myopic,
see § 2, and the maintenance example in § 3, and for an inventory problem, § 5,
where there are optimal order-to levels.

2 MYOPIC OPTIMA IN MDP’S

Following Sobel (1981) we show here that certain MDP’s, solved by (1.3), have
myopic optimal solutions. As there we assume that
• the set

W := {(s, a) : a ∈ A(s), s ∈ S} is finite, and denote (2.1a)
S(a) := {s ∈ S : a ∈ A(s)} , (2.1b)

the set of states in which action a is feasible .

• the returns r(s, a) have the form

r(s, a) = K(a) + L(s) , (s, a) ∈ W , (2.2)

where L(s) is the salvage value function as in (1.1b), and
• the transition probabilities pij(a) do not depend on i,

pij(a) := qj(a) , ∀ i, j ∈ S, a ∈ A (2.3)
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The last assumption implies that the next state Z(s, a) depends only on a ∈ A,
i.e. there is a RV ζ(a) with the same distribution, a fact denoted by

Z(s, a) ∼ ζ(a) , ∀ (s, a) ∈ W (2.4)

Theorem 2.1 (After Sobel, Sobel (1981), Theorem 1). Let (2.2)–(2.3) hold,
and use the certainty equivalents Sβ and Sβ of (1.4) and (1.6). Denote

Gβ(a) := K(a) + αSβ (L(ζ(a))) , a ∈ A (2.5)

Let a∗(β) maximize Gβ(a) on A

K(a∗(β)) + αSβ (L(ζ(a∗(β)))) ≥ K(a) + αSβ (L(ζ(a))) , ∀ a ∈ A (2.6)

and suppose

a∗(β) ∈ A(s1) (2.7a)∑
j∈S(a∗(β))

qj(a∗(β)) = 1 (2.7b)

Then the policy at := a∗(β), t = 1, 2, · · · , is optimal.

Proof: This proof is an adaptation of the proof of Sobel (1981), Theorem 1.
We use the shift additivity property of the RCE Sβ(·), see (A.5),

Sβ(X + c) = Sβ(X) + c , for all RV X and constant c . (2.8)

Denote the (T + 1)–dimensional random vector of (undiscounted) rewards by

X = (r(s1, a1) , r(s2, a2) , · · · , r(sT , aT ) , L(sT+1))
= (r(s1, a1) , r(ζ(a1), a2) , · · · , r(ζ(aT−1), aT ) , L(ζ(aT )) , by (2.4) .

Therefore, by (1.5a),

S{β,··· ,β}(X) = r(s1, a1) +
T∑

t=2

αt−1
{
Sβ (r(ζ(at−1), at))

}
+ αT Sβ (L(ζ(aT )))

= K(a1) + L(s1) +
T∑

t=2

αt−1 Sβ (K(at) + L(ζ(at−1))) + αT Sβ (L(ζ(aT )) ,

by (2.2) ,

= K(a1) + L(s1) +
T∑

t=2

αt−1
{
K(at) + Sβ (L(ζ(at−1)))

}
+ αT Sβ (L(ζ(aT )) ,

by (2.8) ,

= L(s1) +
T∑

t=1

αt−1
{
K(at) + αSβ (L(ζ(at)))

}
.

From (2.6) it follows that the policy {a∗(β)} is optimal, if it is feasible, i.e. if

a∗(β) ∈ A(st) , t = 1, 2, · · ·

This is guaranteed by (2.7a)–(2.7b). 4
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3 A MAINTENANCE PROBLEM

We solve the maintenance problem in Sobel (1981), § 5. A system has N
identical and independent units, each is in one of two states, functioning or
broken.

The state s of the system is the number of functioning units, s = 0, 1, · · · , N .
Before each period, the state s is observed, and a decision is made how many

units to repair. The number of units to be repaired is denoted by a− s, so that
after repair there are a functioning units. The cost of repair is Cr per unit.

Each functioning unit may break, during the period, with probability p.
The probability that exactly j units are still functioning at the end of the period
(out of the a units functioning at the beginning of the period) is

qj(a) =
(

a

j

)
pa−j (1− p)j , j = 0, · · · , a .

and is independent of the beginning state, i.e. the transition probabilities
satisfy (2.3).

If all units break during the period, i.e. if the state becomes s = 0, a penalty
of Cp is paid. Otherwise (i.e. if s ≥ 1 at the end of the period) a revenue of
R is collected.

For convenience we assume that the salvage value per functioning unit (at
the end of the last period), is equal to the cost of repair Cr.

The return r(s, a) is therefore

r(s, a) = (1− q0(a))R− Cp q0(a)− Cr (a− s) (3.1a)
= K(a) + L(s) , as in (2.2) ,

where K(a) = (1− q0(a))R− Cp q0(a)− Cr a (3.1b)
L(s) = Cr s . (3.1c)

The optimal policy, see Sobel (1981), is:

repair max {a∗ − s, 0} units if the state is s

where the optimal level a∗ is the maximizer of

G(a) := K(a) + αEL(ζ(a))

= R (1− q0(a))− Cp q0(a)− Cr a + α Cr

a∑
j=0

j qj(a) (3.2a)

= R− (R + Cp) pa − Cr(1− α p) a (3.2b)

Using our approach, the Gβ(a) of (2.5) is

Gβ(a) := G(a)− α
β

2
Var{Crζ(a)}

= G(a)− α
β

2
C2

r Var{ζ(a)}

= G(a)− α
β

2
C2

r a p (1− p) (3.3)
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Corollary 3.1 The maximizer a∗(β) of Gβ(a) is a non-increasing function of
β. In particular,

a∗(β) ≥ a∗ if β < 0 (3.4a)
a∗(β) ≤ a∗ if β > 0 (3.4b)

Proof: The maximizer a∗(β) of Gβ(a) satisfies

Gβ(a)−Gβ(a− 1) ≥ 0
Gβ(a + 1)−Gβ(a) ≤ 0

and the proof follows since, by (3.3),

Gβ(a + 1)−Gβ(a) = G(a + 1)−G(a)− α
β

2
C2

r p (1− p) (3.5)

a decreasing function of β. 4
It follows from (3.4a) that the risk seeking manager, with β < 0, will never
repair less units than the risk-neutral manager.

4 A MAINTENANCE EXAMPLE

This example is based on the maintenance example in Sobel (1981), § 5. There
are N = 4 identical units, which break independently with a probability of
p = 0.3. If any of the units are working at the end of a stage, the system
generates R = 1000, otherwise, a penalty of Cp = 1500 is incurred. Before each
stage, the number of functioning units, s, is observed and a decision, a, is made
to decide how many units will be operational for the stage (i.e. a− s units are
repaired). The cost to repair a machine is Cr = 500.

So for this specific example:

r(s, a) = 1000 (1− q0(a))− 1500 q0(a)− 500 (a− s) (4.1)

is of the form r(s, a) = K(a) + L(s), see (3.1), where

K(a) = 1000 (1− q0(a))− 1500 q0(a)− 500 a

L(s) = 500 s

and Gβ(a) takes the form (3.3),

Gβ(a) = K(a) + αSβ(L(ζ(a)))) (4.2)

= K(a) + 500 α
a∑

j=1

j qj(a)− α
β

2
C2

r a p (1− p) .

We seek the maximizer of Gβ(a). The table below gives values of Gβ(a) for
three typical values of β,

β = 0.006 , risk averse,

β = 0 , risk neutral , and
β = −.01 , risk seeking .
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For each β we underline the maximum value of Gβ(a).

β a
0 1 2 3 4

.006 −1500 −75 141 116 −248
0 −1500 83 440 565 350

−.01 −1500 345 939 1313 1347

The maximzing a∗(β) are

a∗(.006) = 2
a∗(0) = 3

a∗(−.01) = 4

showing, in agreement with Corollary 3.1, that the risk averse manager will
invest less in repair.

5 AN INVENTORY PROBLEM

The model in this section is based on Denardo (1982), pp. 117–125. It concerns
inventory of a single (discrete) commodity with random demand. We denote

T the number of stages (possibly infinite)
Dt the demand in stage t
pt(j) the probability that Dt = j , j = 0, 1, 2, · · ·
W the wholesale price [$/unit]
R the retail price [$/unit]
S the salvage value [$/unit] at the end of the horizon (stage T + 1)
r the interest rate per stage
α = 1/(1 + r), the discount factor
M the maximum capacity of the warehouse

and assume S < W < R . (5.1)

We further denote

st the inventory level just before stage t (state variable)
at the inventory level at the beginning of stage t (decision variable)

The states evolve according to

st+1 := (at −Dt)+ , t = 1, 2, · · · , T (5.2a)
where s1 := the initial state (given) . (5.2b)

In stage t = 1, · · · , T ,
the sales are min {Dt, at}, and accordingly the revenue is R min {Dt, at} ,
the amount ordered is (at−st), so the ordering cost is W (at−st) , and

finally
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the interest on inventory is α r at W .
We assume, following Denardo (1982), p. 119, that revenue and interest on
inventory occur at the end of the stage. Consequently, the profit in stage t,
with state s and action a, is

Πt(s, a) = αR min {Dt, a} −W (a− s)− αraW , t = 1, · · · , T (5.3a)
ΠT+1(s) = s S (5.3b)

where end-of-stage money is multiplied by α. We denote

gt(a) := αRE {min {Dt, a}} − α r aW (5.4)

so the expected profit in stage t is EΠt(s, a) = gt(a) − W (a − s) , t =
1, · · · , T .

5.1 The classical solution

Let V (st, t) denote the maximal profit resulting from beginning stage t with
state st. The Bellman optimality principle (1.1) then gives

V (st, t) := max
st≤a≤M

{
gt(a)−W (a− st) + αE

{
V

(
(a−Dt)+, t + 1

)}}
for t = 1, · · · , T , (5.5a)

V (sT+1, T + 1) := sT+1 S . (5.5b)

It is convenient to change from V (s, t) to

V (s, t) := V (s, t)− sW . (5.6)

Then, using the facts: α r = 1− α , and
(a−Dt)+ = a−min {Dt, a} (5.7)

we can rewrite (5.5a) as

V (st, t) := max
st≤a≤M

{
Gt(a) + αE

{
V

(
(a−Dt)+, t + 1

)}}
(5.8a)

where Gt(a) := α(R−W )E {min {Dt, a}} − 2(1− α)aW . (5.8b)

The maximand in (5.8a) is independent of st. We denote it by

Lt(a) := Gt(a) + αE
{
V

(
(a−Dt)+, t + 1

)}
. (5.9)

We assume now M = ∞ (i.e. unlimited storage capacity) and finite E {Dt}
for all t. For t = 1, · · · , T it follows then that the maximand Lt(·) is concave
on {0, 1, 2, · · · } and lim

a→∞
Lt(a) = −∞. Consequently there is a nonnegative

integer St such that

Lt(St) = max
a≥0

{Lt(a)} (5.10a)

and V (s, t) =
{

Lt(St) , if s ≤ St

Lt(s) , if s > St
(5.10b)

see Denardo (1982), Theorem 6.2. This means, for t = 1, · · · , T , and beginning
stock level st, that the optimal order is (St − st)+.
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5.2 Solution based on the quadratic certainty equivalent

Consider now the alternative approach, of applying the certainty equivalent
Sβ of (1.6) to evaluate the stream of profits (5.3). The corresponding optimal
value functions

V (st, t) =
max

at,at+1,··· ,aT

Sβ (Πt(st, at),Πt+1(st+1, at+1), · · · ,ΠT (sT , aT ),ΠT+1(sT+1))

then satisfy

V (s, t) = max
s≤a≤M

{−W (a− s)− α r aW + (5.11a)

+ αSβ

(
R min {D, a}+ V ((a−D)+, t + 1)

)}
, t = 1, · · · , T

V (s, T + 1) = s S (5.11b)

Using (5.7) we can rewrite (5.11a) as

V (s, t) = max
s≤a≤M

{−W (a− s)− α r aW +

+ αSβ

(
R(a− (a−D)+) + V ((a−D)+, t + 1)

)}
= max

s≤a≤M
{−W (a− s)− α r aW + α aR +

+ αSβ

(
V ((a−D)+, t + 1)−R(a−D)+

)}
(5.12)

where we used the shift–additivity property (2.8) to take the deterministic
quantity aR outside Sβ . In analogy with (5.6) we define

V̂ (s, t) := V (s, t)− sR . (5.13)

The recursions (5.11) then become,

V̂ (s, t) = −(R−W ) s + max
s≤a≤M

{(α(R−W )− 2(1− α)W ) a + (5.14a)

+ αSβ

(
V̂ ((a−Dt)+, t + 1)

)}
, t = 1, · · · , T

= −(R−W ) s + max
s≤a≤M

{(α(R−W )− 2(1− α)W ) a + (5.14b)

+ αE {V̂ ((a−Dt)+, t + 1)} − α
β

2
Var {V̂ ((a−Dt)+, t + 1)}

V̂ (s, T + 1) = s (S −R) (5.14c)

The maximand in (5.14a) is independent of s. We denote it

L̂t(a) := G(a) + αSβ

(
V̂ ((a−Dt)+, t + 1)

)
=

= G(a) + αE V̂ ((a−Dt)+, t + 1)− α
β

2
Var V̂ ((a−Dt)+, t + 1) (5.15)

where G(a) := (α(R−W )− 2(1− α)W ) a (5.16)



10

Note that (5.14b) reduces to (5.8a) if β = 0.
The following theorem, establishing optimal order-to-levels, is analogous to

Denardo (1982), Theorem 6.2,.

Theorem 5.1 Let M = ∞, let the random variables Dt have bounded sup-
ports for all t, and let the risk-parameter β be positive. Then for t = 1, · · · , T
the function L̂t(·) of (5.15) is concave on a = 0, 1, 2, · · · , and there exists a
nonnegative integer St such that

L̂t(St) = max
a≥0

{L̂t(a)} (5.17a)

and V̂ (s, t) = −(R−W ) s +

{
L̂t(St) , if s ≤ St

L̂t(s) , if s > St

(5.17b)

Proof: The theorem follows from the following

claim: for t = 1, · · · , T the functions L̂t(a) are concave, and lim
a→∞

L̂t(a) = −∞

that we prove by induction on t.
(i) The function L̂T is concave and lim

a→∞
L̂T (a) = −∞:

L̂T (a) = G(a) + αSβ

(
V̂ ((a−DT )+, T + 1

)
= G(a) + αSβ

(
(S −R) (a−DT )+

)
, by (5.14c) ,

= G(a) + α (S −R)E
{
(a−DT )+

}
− α

β

2
(S −R)2 Var

{
(a−DT )+

}
and concavity follows from: G(a) is linear, (S−R) < 0, E (a−DT )+ is convex
in a, and β > 0. Now,

lim
a→∞

L̂T (a) =

= lim
a→∞

{G(a) + α (S −R) a} − α (S −R)EDT − α
β

2
(S −R)2 VarDT ,

since DT has bounded support ,

= lim
a→∞

{−(α(W − S) + 2(1− α)W ) a}+ a constant , by (5.16) ,

= −∞ , by (5.1) .

(ii) Assume the claim true for t + 1, · · · , T . substituting (5.17b) in

L̂t(a) := G(a) + αSβ

(
V̂ ((a−Dt)+, t + 1)

)
we note that L̂t(a) is concave for any degenerate RV Dt. The concavity of (5.15)
then follows from that of Sβ(·), see (A.6). The statement lim

a→∞
L̂t(a) = −∞ is

proved similarly. 4



REFERENCES 11

Acknowledgments

The research of Steve Levitt was supported initially by NSF, Research Experiences

for Undergraduates program, at Rutgers University. The authors wish to thank the

referees for their constructive suggestions.

hukal,whi-88, baross, moso, boso, sob-90, koch, filvr, fikale

References

Baykal-Gürsoy, M. and Ross, K.W. (1992), Variability sensitive Markov decision
processes, Math, Oper. Res., Vol. 17, pp. 558-571.

Ben-Israel, A. and Ben-Tal, A. (1997), Duality and equilibrium prices in eco-
nomics of uncertainty, Math. Meth. of Oper. Res., Vol. 46, pp. 51-85.

Ben-Tal, A. (1985), The entropic penalty approach to stochastic programming,
Math. Oper. Res., Vol. 10, pp. 263-279.

Ben-Tal, A. and Ben-Israel, A. (1991), A recourse certainty equivalent for de-
cisions under uncertainty, Annals of Oper. Res., Vol. 30, pp. 3-44.

Bouakiz, M. and Sobel, M.J. (1992), Inventory control with an exponential
utility criterion, Oper. Res., Vol. 40, pp. 603-608.

Denardo, E.V. (1982), Dynamic Programming: Models and Applications, Prentice-
Hall, Englwood Cliffs, New Jersey.

Filar, J., Kallenberg, L.C.M. and Lee, H.M. (1989), Variance-penalized Markov
decision processes, Math. Oper. Res., Vol. 14, pp. 147-161

Filar, J. and Vrieze, K. (1997), Competitive Markov Decision Processes, Springer-
Verlag, New York.

Huang, Y. and Kallenberg, L.C.M. (1994), On finding optimal solutions for
Markov decision chains: a unifying framework for mean-variance tradeoffs,
Math. Oper. Res., Vol. 19, pp. 434-448
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Appendix A: The recourse certainty equivalent

The formulation (1.3) is suggested by the recourse certainty equivalents
(RCE’s) introduced in Ben-Tal (1985), and developed in Ben-Israel and Ben-
Tal (1997), and Ben-Tal and Ben-Israel (1991), as criteria for decision making
under uncertainty. The RCE of a RV X is defined as

SU (X) := sup
x
{x + EU(X− x)} (A.1)

where U(·) is the decision-maker’s value-risk function. It induces a complete
order “�” on RV’s,

X � Y ⇐⇒ SU (X) ≥ SU (Y) (A.2)

in which case X is preferred over Y by a decision maker (DM) with a value–risk
function U . Such a DM is indifferent between a RV X and the certain payment
SU (X), denoted by

X ≈ SU (X) (A.3)

Example. Consider the quadratic value–risk function

U(x) := x− β

2
x2 (A.4)

where β is a risk parameter. If β > 0 then (A.1) gives the RCE

(1.4) Sβ(X) = EX− β

2
VarX

Since X ≈ Sβ(X) ≤ EX, by (A.3) and (1.4), it follows that a person
maximizing the criterion (1.4) is risk averse if β > 0, i.e prefers EX to X.

If β < 0 then (A.1) may be unbounded, but we still use the RCE (1.4), to
model risk seeking behavior. This case is studied in Ben-Israel and Ben-Tal
(1997) in the context of maximum buying price. 4
An important property of the RCE, that holds for arbitrary value-risk functions
U , is shift additivity:

SU (X + c) = SU (X) + c , for all RV X and constant c . (A.5)

Thus the RCE separates deterministic changes in wealth from the random
variable that it evaluates. For the quadratic value–risk function (A.4), we
already encountered shift additivity in (2.8). Another notable property of the
RCE is concavity: If U is strictly concave then for any RV’s X0 , X1 and
0 < α < 1,

SU (αX1 + (1− α)X0) ≥ αSU (X1) + (1− α)SU (X0) (A.6)

see Ben-Tal and Ben-Israel (1991), Theorem 2.1(f).
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The RCE of a vector RV X = (X1, · · · , XT ) is defined, analogously to
(A.1), as

SU (X1, · · · , XT ) = sup
x1,x2,··· ,xT

{
T∑

t=1

αt−1xt + EU(X1 − x1, · · · ,XT − xT )

}
(A.7)

If the value–risk function U(x1, · · · , xT ) is of the form (called separable)

U(x1, · · · , xT ) =
T∑

t=1

αt−1Ut(xt) (A.8)

then the RCE (A.7) is
S{U1,··· ,UT }(X) =

T∑
t=1

αt−1 SUt
(Xt) . (A.9)

The RCE S{β1,··· ,βT } of (1.5b) is a special case of (A.9), if all Ut are quadratic
functions (A.4).

At stage t, the current and future rewards form a random vector

Yt = (r(st, at) , r(st+1, at+1) , · · · , r(sT , aT ) , L(sT+1))
= (r(st, at) , Yt+1)

whose RCE is, by (A.9),

S{Ut,Ut+1··· ,UT ,UT+1}(Yt) = r(st, at) + αS{Ut+1··· ,UT ,UT+1}(Yt+1) (A.10)

An RCE maximizer uses the OV function

V (st, t) := max
a∈A(st)

S{Ut,Ut+1··· ,UT ,UT+1}(Yt) (A.11)

= max
a∈A(st)

{
r(st, a) + αSUt+1(V (Z(st, a), t + 1))

}
, (A.12)

by (A.10), which explains (1.3) .


