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a b s t r a c t

An iterative method is proposed for the K facilities location problem. The problem is relaxed using
probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose
the problem into K single-facility location problems, are updated at each iteration together with the
facility locations. The proposed method is a natural generalization of the Weiszfeld method to several
facilities.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Fermat–Weber location problem (also single-facility lo-
cation problem) is to locate a facility that will serve optimally
a set of customers, given by their locations and weights, in the
sense of minimizing the weighted sum of distances traveled by the
customers. A well known method for solving the problem is the
Weiszfeldmethod [30], a gradient method that expresses and up-
dates the sought center as a convex combination of the data points.
The multi-facility location problem (MFLP) is to locate a

(given) number of facilities to serve the customers as above. Each
customer is assigned to a single facility, and the problem (also
called the location–allocation problem) is to determine the op-
timal locations of the facilities, as well as the optimal assignments
of customers (assignment is absent in the single-facility case.)
MFLP is NP hard, [26].We relax it by replacing rigid assignments

with probabilistic assignments, as in [4,3] and [8]. This allows a
decomposition of MFLP into single-facility location problems, cou-
pled by the membership probabilities that are updated at each it-
eration.

2. The problem

Notation. 1, K := {1, 2, . . . , K}. ‖x‖ denotes the Euclidean norm
of a vector x ∈ Rn. The Euclidean distance d(x, y) = ‖x − y‖ is
used throughout.
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Let X := {xi : i ∈ 1,N} be a set of N data points in Rn, with
givenweights {wi > 0 : i ∈ 1,N}. Typically, the points {xi} are the
locations of customers, the weights {wi} are their demands.
Given an integer 1 ≤ K < N , theMFLP is to locate K facilities,

and assign each customer to one facility, so as tominimize the sum
of weighted distances

min
c1,c2,...,cK

K∑
k=1

∑
xi∈Ck

wi d(xi, ck) (L.K )

where {ck} are the locations (or centers) of the facilities, andCk is
the cluster of customers that are assigned to the kth facility.
For K = 1, one gets the Fermat–Weber location problem:

givenX and {wi : i ∈ 1,N} as above, find a point c ∈ Rnminimizing
the sum of weighted distances,

min
c∈Rn

N∑
i=1

wi d(xi, c), (L.1)

see [12,23,24,31] and their references.
If the points {xi} are not collinear, as is assumed throughout, the

objective function of (L.1)

f (c) =
N∑
i=1

wi d(xi, c) (1)

is strictly convex, and (L.1) has a unique optimal solution.
The gradient of (1) is undefined if c coincides with one of the

data points {xi}. For c 6∈ X,

∇f (c) = −
N∑
i=1

wi
xi − c
‖xi − c‖

, (2)
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and the optimal center c∗, if not in X, is characterized by∇f (c∗) =
0, expressing it as a convex combination of the points xi,

c∗ =
N∑
i=1

λi xi, with weights λi

=
wi/‖xi − c∗‖

N∑
m=1

wm/‖xm − c∗‖
that depend on c∗.

This circular result gives rise to theWeiszfeld iteration, [30],
c+ := T (c) (3)
where c+ is the updated center, c is the current center, and

T (c) :=


N∑
i=1

 wi/‖xi − c‖
N∑
m=1

wm/‖xm − c‖

 xi, if c 6∈ X;

c, if c ∈ X.

(4)

In order to extend ∇f (c) to all c, Kuhn [21] modified it as follows:
∇f (c) := −R(c), where

R(c) :=


−∇f (c), if c 6∈ X;

max {0, ‖Rj‖ − wj}
Rj

‖Rj‖
, if c = xj ∈ X,

(5)

where Rj :=
∑
i6=j

wi

‖xi − xj‖
(xi − xj) (6)

is the resultant force ofN−1 forces ofmagnitudewi and direction
xi − xj, i 6= j. The following properties of the mappings R(·), T (·),
the optimal center c∗ and any point xj ∈ X were proved by
Kuhn [21]:

c = c∗ ⇐⇒ R(c) = 0. (7a)

c∗ ∈ convX (the convex hull of X). (7b)
If c = c∗ then T (c) = c. Conversely, if c 6∈ X,
T (c) = c then c = c∗. (7c)

If T (c) 6= c then f (T (c)) < f (c). (7d)

xj = c∗ ⇐⇒ wj ≥ ‖Rj‖. (7e)
If xj 6= c∗,

the direction of steepest descent of f at xj is Rj/‖Rj‖. (7f)
If xj 6= c∗ there exists δ > 0 such that

0 < ‖c− xj‖ H⇒ ‖T s(c)− xj‖ > δ for some s. (7g)

lim
c→xj

‖T (c)− xj‖
‖c− xj‖

=
‖Rj‖
wj

. (7h)

For any c0, if no cr := T r(c0) ∈ X, then lim
r→∞

cr = c∗. (7i)

These results are generalized in Theorem 1 to the case of several
facilities.

Remark 1. Another claim in [21], that
T r(c0)→ c∗

for all but a denumerable number of initial centers c0,
was refuted by Chandrasekaran and Tamir [6]. Convergence can be
assured by modifying the algorithm (3) and (4) at a non-optimal
center that coincideswith a data point xj. Balas andYu [1] proposed
moving from xj in the direction Rj (6) of steepest descent, assuring
a decrease of the objective, and non-return to xj by (7c) and (7d).
Vardi and Zhang [29] guaranteed exit from xj by augmenting the
objective function with a quadratic of the distances to the other
data points. Convergence was also addressed by Ostresh [27], Eck-
hardt [13], Drezner [11], Brimberg [5], Beck et al. [2], and others.
3. Probabilistic assignments

For 1 < K < N , the problem (L.K ) is NP hard, [26]. It can be
solved polynomially inN for K = 2, see [10], and possibly for other
given K .
We relax the problem by using probabilistic (or soft) assign-

ments, with cluster membership probabilities,

pk(x) := Prob {x ∈ Ck}, k ∈ 1, K ,

assumed to depend only on the distances {d(x, ck) : k ∈ 1, K} of
the point x from the K centers. A reasonable assumption is

assignment to a facility is more probable the closer it is (A)

and a simple way to model it,

pk(x) d(x, ck) =
1
w
D(x), k ∈ 1, K , (8)

wherew is the weight of x, and D(·) is a function of x, that does not
depend on k. There are other ways to model assumption (A), but
(8) works well enough for our purposes.
Model (8) expresses probabilities in terms of distances, display-

ing neutrality among facilities in the sense of the Choice Axiom of
Luce, [25, Axiom 1], see [19, Appendix A]. Other issues such as at-
tractiveness, introduced in the Huff model [15,16], see also [9], are
ignored.
Using the fact that probabilities add to one, we get from (8),

pk(x) =
1/d(x, ck)
K∑̀
=1
1/d(x, c`)

=

∏
j6=k
d(x, cj)

K∑̀
=1

∏
m6=`
d(x, cm)

, k ∈ 1, K , (9)

interpreted as pk(x) = 1 if d(x, ck) = 0, i.e., x = ck. In the special
case K = 2,

p1(x) =
d(x, c2)

d(x, c1)+ d(x, c2)
,

p2(x) =
d(x, c1)

d(x, c1)+ d(x, c2)
.

(10)

From (8), we similarly get

D(x)
w
=

K∏
j=1
d(x, cj)

K∑̀
=1

∏
m6=`
d(x, cm)

, (11)

which is (up to a constant) the harmonic mean of the distances
{d(x, cj) : j ∈ 1, K}. In particular,

D(x) = w
d(x, c1)d(x, c2)
d(x, c1)+ d(x, c2)

, for K = 2. (12)

The function (11) is called the joint distance function (JDF)
at x.
Abbreviating pk(x) by pk, Eq. (8) is an optimality condition for

the extremum problem

min

{
w

K∑
k=1

p2k d(x, ck) :
K∑
k=1

pk = 1, pk ≥ 0, k ∈ 1, K

}
(13)

with variables {pk}. The squares of probabilities in (13) are ex-
plained as a device for smoothing the underlying objective, min
{‖x− ck‖ : k ∈ 1, K}, see the seminal article by Teboulle [28].
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(L.K ) can thus be approximated by the minimization problem

min
K∑
k=1

N∑
i=1
p2k(xi) wi d(xi, ck) (P.K )

s.t.
K∑
k=1
pk(xi) = 1, i ∈ 1,N,

pk(xi) ≥ 0, k ∈ 1, K , i ∈ 1,N,
with two sets of variables, the centers {c1, . . . , cK } and probabil-
ities {pk(xi) : k ∈ 1, K , i ∈ 1,N}, corresponding, respectively, to
the centers and assignments of the original problem (L.K ).

Remark 2. Given a solution of (P.K ), if each customer frequents the
centers with the corresponding probabilities, then the expected
sum of weighted distances is

K∑
k=1

N∑
i=1

pk(xi) wi d(xi, ck), (14)

which is no better than if each customer is assigned to the nearest
facility, i.e. the one with the highest probability. Therefore, even if
an optimal solution of (P.K ) is also optimal for (L.K ), the value (14)
is just an upper bound on the optimal value of (L.K ).
Another way to see this is by rewriting (14), using (8) and (11),
K∑
k=1

N∑
i=1

pk(xi) wi d(xi, ck) =
K∑
k=1

N∑
i=1

D(xi)

= K
N∑
i=1

D(xi) ≥
N∑
i=1

wi min
k∈1,K
{d(xi, ck)}. (15)

The inequality follows since the harmonic mean is no less than the
minimum. The larger K is, the better is the upper bound (14), be-
cause the harmonic mean is then closer to the minimum.

4. Probabilities and centers

The objective function of (P.K ) is denoted

f (c1, . . . , cK ) :=
K∑
k=1

N∑
i=1

p2k(xi) wi d(xi, ck). (16)

A natural approach to solving (P.K ), see e.g. [7], is to fix one set of
variables, andminimize (P.K ) with respect to the other set, then fix
the other set, etc. We thus alternate between
(1) the probabilities problem, i.e. (P.K ) with given centers, and
(2) the centers problem, (P.K ) with given probabilities,
and update their solutions as follows:
Probabilities update. With the centers given, and the distances

d(xi, ck) computed for all centers ck and data points xi, the
minimizing probabilities are given explicitly by (9),

pk(xi) =

∏
j6=k
d(xi, cj)

K∑̀
=1

∏
m6=`
d(xi, cm)

, k ∈ 1, K . (17)

Centers update. Fixing the probabilities pk(xi) in (P.K ), the
objective function (16) is a separable function of the cluster
centers,

f (c1, . . . , cK ) :=
K∑
k=1

fk(ck), (18)

where

fk(c) :=
N∑
i=1

p2k(xi) wi ‖xi − c‖, k ∈ 1, K . (19)
The centers problem thus decomposes into K problems of type
(L.1), coupled by the probabilities.
The gradient of (19), wherever it exists, is

∇fk(c) = −
N∑
i=1

p2k(xi) wi
‖xi − c‖

(xi − c), k ∈ 1, K . (20)

Zeroing (20), we get the optimal centers

c∗k =
N∑
i=1

λk(xi) xi , k ∈ 1, K , (21a)

as convex combinations of the data points, with weights λk(xi)
given by

λk(xi) =
p2k(xi) wi/‖xi − c

∗

k‖

N∑
j=1
p2k(xj) wj/‖xj − c

∗

k‖

, k ∈ 1, K , i ∈ 1,N. (21b)

Eqs. (21a) and (21b) induce K mappings Tk : c → Tk(c),
k ∈ 1, K ,

Tk(c) :=
N∑
i=1

 p2k(xi) wi/‖xi − c‖
N∑
j=1
p2k(xj) wj/‖xj − c‖

 xi (22a)

for cdifferent than thedata points {xj : j ∈ 1,N}, andby continuity,

Tk(xj) := xj, for all j ∈ 1,N. (22b)

5. Territories of facilities

In the MFLP (L.K ), each facility serves a cluster of customers,
in a certain territory (see the discussion by Huff [15]). These
territories are given naturally by the membership probabilities of
the approximate problem (P.K ).
For any two centers cj, ck the locus of the points xwith pj(x) =

pk(x) is by (17) represented by the equation
‖x− cj‖ = ‖x− ck‖ (23)

and is thus a hyperplane (line inR2). The portion of the hyperplane
(23), where

pj(x) = pk(x) ≥ pm(x), ∀m 6= j, k, (24)

is either empty, bounded or unbounded. We call it the common
boundary of the clusters Cj and Ck. The common boundaries
constitute a Voronoi diagram of the centers. Each Voronoi cell
is a polyhedron, and is the natural territory of its facility, see
e.g. Figs. 1(b) and 2(b).

6. Contour approximation and uncertainty

The JDF at a point was given in (11). The JDF of the set X = {xi :
i ∈ 1,N} is defined as the sum,

D(X) :=
N∑
i=1

1
wi
D(xi). (25)

It depends on the K centers, and has the following useful property:
for optimal centers, most of the data points are contained in
its lower level sets, see [3,18]. We call this property contour
approximation. The JDF of the set X, (25), is thus a measure of the
proximity of customers to their respective facilities: the lower the
value of D(X), the better is the set of centers {ck}.
The JDF (11) has the dimension of distance. Normalizing it, we

get the dimensionless function
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Fig. 1. Illustration of Example 1.
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Fig. 2. Illustration of Example 2.
E(x) =
1
w
K D(x)

/(
K∏
j=1

d(x, cj)

)1/K
, (26)

with 0/0 interpreted as zero. E(x) is the harmonic mean of the
distances {d(x, cj) : j ∈ 1, K} divided by their geometricmean, and
can bewritten, using (9), as the geometricmean of the probabilities
(up to a constant),

E(x) = K

(
K∏
j=1

pj(x)

)1/K
. (27)

It follows that 0 ≤ E(x) ≤ 1,with E(x) = 0 if any d(x, cj) = 0, i.e. if
x is a cluster center, and E(x) = 1 if and only if the probabilities
pj(x) are all equal.
In particular, for K = 2,

E(x) = 2
√
d(x, c1)d(x, c2)

d(x, c1)+ d(x, c2)
= 2

√
p1(x)p2(x) . (28)

E(x) represents the uncertainty of classifying the point x,
indeed it can be written as

E(x) = exp
{
−I
(
p(x),

1
K
1
)}

, (29)

where I
(
p(x), 1K 1

)
is the Kullback–Leibler distance, [22], be-

tween the distributions

p(x) = (p1(x), p2(x), . . . , pK (x)) and
1
K
1 =

(
1
K
,
1
K
, . . . ,

1
K

)
.

The latter distribution, 1K 1, is of maximal uncertainty. Therefore,
E(x) = 1 ⇐⇒ p(x) = 1

K 1. We call E(x) the classification
uncertainty function, abbreviated CUF, at x.
The CUF of the data set X = {xi : i ∈ 1,N} is defined as

E(X) :=
1
N

N∑
i=1

E(xi), (30)

and is amonotone decreasing function ofK , the number of clusters,
decreasing from E(X) = 1 (for K = 1), to E(X) = 0 (for K = N , the
trivial case where every data point is its own cluster).
The ‘‘right’’ number K of facilities to serve the given customers

(if not given) is in general determined by economic considerations
(operating costs, etc.) An intrinsic criterion for determining the op-
timal K is provided by the rate of decrease of E(X), see e.g. Fig. 3(d).

7. Optimality conditions and convergence

The gradient (20) is undefined (0/0) if c coincides with any of
the data points.Wemodify the gradient, following Kuhn [20]–[21],
and denote the modified gradient by−Rk.
If a center ck is not one of the data points, we copy (20) with a

change of sign,

Rk(ck) :=
N∑
i=1

p2k(xi) wi
‖xi − ck‖

(xi − ck). (31)

Otherwise, if a center ck coincides with a data point xj then xj
belongs with certainty to the kth cluster and, by (17),

pk(xj) = 1, pm(xj) = 0 for allm 6= k. (32)

In this case, define

Rk(xj) := max {‖R
j
k‖ − wj, 0}

Rjk
‖Rjk‖

, (33a)

where
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Fig. 3. Illustration of Example 3.
Rjk =
∑
i6=j

p2k(xi) wi
‖xi − xj‖

(xi − xj). (33b)

Therefore, if ‖Rjk‖ < wj then Rk(xj) = 0; otherwise, Rk(xj) is a
vector with magnitude ‖Rjk‖ − wj and direction R

j
k.

For K = 1, (33a) and (33b) reduce to their single-facility
counterparts (5) and (6), respectively.
The results (7a)–(7i) are reproduced, for several facilities, in

parts (a)–(i) of the following theorem.

Theorem 1. (a) Given the data {xi : i ∈ 1,N} and {wi : i ∈ 1,N},
let {ck : k ∈ 1, K} be arbitrary points, and let the corresponding
KN probabilities {pk(xi)} be given by (17). Then, the condition

Rk(ck) = 0, for all k ∈ 1, K , (34)

is necessary and sufficient for the points {c1, . . . , cK } to minimize
f (c1, . . . , cK ) of (18).

(b) The optimal centers {c∗k : k ∈ 1, K} are in the convex hull of the
data points {x1, . . . , xN}.

(c) If a center c is optimal, then it is a fixed point of Tk (of (22a)),

Tk(c) = c, for some k ∈ 1, K . (35)

Conversely, if c 6∈ {xj : j ∈ 1,N} and satisfies (35), then c is
optimal.

(d) If Tk(c) 6= c, then

fk(Tk(c)) < fk(c), k ∈ 1, K . (36)

(e) If the data point xj is an optimal center, thenwj ≥ ‖Rj‖.
(f) If the data point xj is not an optimal center, the direction of
steepest descent of f at xj is Rj

‖Rj‖
.

(g) Let xi be a data point that is not an optimal center ck, for a given
k ∈ 1, K . Then, there exist δ > 0 and an integer s > 0 such that

0 < ‖xi − c‖ ≤ δ implies ‖xi − T s−1k (c)‖ ≤ δ and
‖xi − T sk(c)‖ > δ

(h)

lim
c→xj

‖xj − Tk(c)‖
‖xj − c‖

=
‖Rjk‖
p2k(xj) wj

for k ∈ 1, K , j ∈ 1,N.

(i) Given any c0k , k ∈ 1, K, define the sequence {c
r
k = T

r
k (c

0
k) : r =

1, 2, . . .}. If no crk is a data point, then limr→∞ c
r
k = c

∗

k , for some
optimal centers {c∗1, . . . , c

∗

K }. �

8. A generalized Weiszfeld method for the multi-facility
location problem

The above results are implemented in an algorithm for solving
(P.K ).

Algorithm 1. A generalizedWeiszfeldmethod for several facilities

Data: D = {xi : i ∈ 1,N} data points (locations of customers),
{wi : i ∈ 1,N}weights,
K the number of facilities
ε > 0 (stopping criterion)

Initialization: K arbitrary centers {ck : k ∈ 1,K},
Iteration:
Step 1 compute distances {d(x, ck) : k ∈ 1,K} for all x ∈ D

Step 2 compute probabilities {pk(x) : x ∈ D, k ∈ 1,K}
(using (17))

Step 3 update the centers {c+k := Tk(ck) : k ∈ 1,K}
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(using (22a) and (22b))

Step 4 if
K∑
k=1
d(c+k , ck) < ε stop

return to step 1

Writing (22a) as

Tk(c) =
N∑
i=1


p2k (xi) wi
‖xi−c‖

N∑
j=1

p2k (xj) wj
‖xj−c‖

 xi − c+ c

=

N∑
i=1


p2k (xi) wi
‖xi−c‖

N∑
j=1

p2k (xj) wj
‖xj−c‖

 (xi − c)+ c

we get, from (31),

Tk(c) = c+ hk(c)Rk(c) (37)

with hk(c) =
1

N∑
j=1

p2k (xj) wj
‖xj−c‖

(38)

showing that Algorithm 1 is a gradient method, following the
direction of the resultant Rk(c) with step of length hk(c)‖Rk(c)‖,
except for the data points {xj : j ∈ 1,N}which are left fixed by Tk.

Remark 3. (a) Convergence can be established as in theWeiszfeld
algorithm, by forcing a move away from non-optimal data
points (where the algorithm gets stuck by (22b)), using ideas
of Balas and Yu [1], or Vardi and Zhang [29], see Remark 1.

(b) The probabilities {pk(xi) : k ∈ 1, K , i ∈ 1,N} are not
needed explicitly throughout the iterations. These probabilities
are given by the distances {d(xi, ck)}, see (17), and therefore the
centers update in Step 3 requires only the distances. Step 2may
thus be omitted.

(c) The final probabilities (following the stop in Step 4) are needed
for assigning customers to facilities. In the absence of capacity
constraints, each customer is assigned to the nearest center,
which by (8) has the highest probability.

(d) The algorithm is robust, since theweights in (21b) are inversely
proportional to the distance, and as a result outliers are dis-
counted, having little influence on the facility locations.

(e) Algorithm1 can bemodified to account for capacity constraints
on the facilities, as in [17]. This is necessary in capacitated
MFLPwhere such constraints may force the customers to split
their demands among several facilities, and travel farther than
in the unconstrained case. CapacitatedMFLP is handled in a se-
quel article.

(f) Algorithm 1 can handle other models for assumption (A), for
example, (8) replaced by,

pk(x) φ(d(x, ck)) =
1
w
D(x), k ∈ 1, K ,

where φ(·) is an increasing function, such as dα, α > 0 or e d,
see [3, Sections 2.8 and 3].

9. Numerical examples

Example 1. This example uses the data of Cooper [7]. It is required
to locate 3 facilities to serve the 15 customers shown in Fig. 1(a).
The optimal solution has value 143.19, and the value of the worst
stable solution is 194.03.
Algorithm 1 was tried 2000 times on this (P.3), using random

initial centers, and a tolerance ε = 0.001.
The optimal solution was found in 62% of the trials, the worst

solution in 0.7% of the trials. The average number of iterations was
23.
The optimal centers are shown in Fig. 1(b), together with some

level sets of themembership probability for each cluster. The three
half-lines are the common boundaries of the clusters, a Voronoi
diagram of the centers, partitioning the plane into territories
served by each facility. �

Example 2. This example uses data from Eilon et al. [14, p. 83]. It
is required to locate 5 facilities to serve the 50 customers shown in
Fig. 2(a).
For the original problem (L.5), different solutionswere reported

in [14, Table 4.1], with an optimal value of 72.54, and the objective
value at the worst solution is 101.99.
We tested Algorithm 1 on these data 2,000 times, with random

initial centers and ε = 0.001. The average number of iterations
was 22. An optimal solution (with value of 71.52, slightly lower
than the one reported in [14]) was found in 21% of the 2,000 trials.
In 0.35% of the cases, the algorithm found the worst solution.
Fig. 2(b) shows the optimal centers (found by Algorithm 1),

some probability level sets for each cluster, and the common
boundaries of the centers. TheVoronoi diagramhas 4 segments and
4 half-lines (2 common boundaries are empty.) �

Example 3. Fig. 3(a) shows a simulated data of 450 customers,
organized in 3 equal clusters. Problem (P.3) was solved. Fig. 3(b)
shows the centers, and some level sets of the JDF (11), illustrating
the contour approximation property, namely that the lower level
sets of the JDF capture the data points.
Fig. 3(c) shows some level sets of the CUF (27), with darker

shades indicating higher uncertainty. Uncertainty is minimal
(E(x) = 0) if x is one of the centers. Note the patch of maximal
uncertainty (E(x) ≥ 0.99) in the middle, where one is indifferent
between the three centers.
The ‘‘right’’ number of clusters (known a priori in this simulated

example) is determined by solving (P.K ) for values of K = 1, 2, . . .,
calculating the CUF E(X) of the whole dataset (30), and stopping
when themarginal decrease of uncertainty is negligible. The results
are plotted in Fig. 3(d), confirming K = 3 as correct. If the data are
amorphous with no clear number of clusters, e.g. the data shown
in Fig. 2(a), then the graph of E(X) does not give a clue. �
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Appendix. Proof of Theorem 1

Proof of part (a). If ck is not one of the data points, then −Rk(ck)
is the gradient (20) at ck, and (34) is both necessary and sufficient
for a minimum, by the convexity of fk.
If ck coincides with a data point xj, consider the change from xj

to xj + t zwhere ‖z‖ = 1. Then,

d
dt
fk(xj + t z)

∣∣∣∣
t=0
= p2k(xj) wj − R

j
k · z. (39)

The greatest decrease of fk is for z along R
j
k, i.e., when

z =
Rjk
‖Rjk‖

, (proving part (f)).
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Therefore, ck (that coincides with xj) is a local minimum if and only
if,

p2k(xj) wj −
Rjk · R

j
k

‖Rjk‖
≥ 0,

which is equivalent to

‖Rjk‖ ≤ p
2
k(xj) wj,

or Rk(ck) = 0, by (33a).

Proof of part (b). If c∗k is one of the data points, then it is trivially
in the convex hull. Otherwise, the condition Rk(c∗k) = 0, see (34),
results in (21a) and (21b) as above.

Proof of part (c). Follows from part (a), since for c 6∈ X,

c = Tk(c)⇐⇒ Rk(c) = 0,

while for c ∈ X, c = Tk(c) for all k.

Proof of part (d). The two functions fk(·) in (36) are different
because the probabilities changed. We prove the inequality (36)
for the original probabilities, noting that the updated probabilities
(17) are optimal, and result in further decrease.
c is not one of the data points, since Tk(c) 6= c. It follows

then from (22a) that Tk(c) is the center of gravity of weights
p2k(xi) wi/‖xi − c‖ placed at the data points xi. By elementary cal-
culus, Tk(c) is the unique minimum of the strictly convex function

g(y) =
N∑
i=1

p2k(xi) wi
‖xi − c‖

‖xi − y‖2.

Since c 6= Tk(c),

g(Tk(c)) =
N∑
i=1

p2k(xi) wi
‖xi − c‖

‖xi − Tk(c)‖2 < g(c)

=

N∑
i=1

p2k(xi) wi
‖xi − c‖

‖xi − c‖2 = fk(c).

On the other hand,

g(Tk(c)) =
N∑
i=1

p2k(xi) wi
‖xi − c‖

[
‖xi − c‖ +

(
‖xi − Tk(c)‖ − ‖xi − c‖

)]2
= fk(c)+ 2

(
fk(Tk(c))− fk(c)

)
+

N∑
i=1

p2k(xi) wi
‖xi − c‖

[
‖xi − Tk(c)‖ − ‖xi − c‖

]2
Combining these results,

2fk(Tk(c))+
N∑
i=1

p2k(xi) wi
‖xi − c‖

[
‖xi − Tk(c)‖ − ‖xi − c‖

]2
< 2fk(c)

proving that fk(Tk(c)) < fk(c).

Proof of part (e). Follows from part (a), the definition

Rk(xj) := max {‖R
j
k‖ − p

2
k(xj) wj, 0}

Rjk
‖Rjk‖

, (33a)

and pk(xj) = 1, since xj = ck.

Proof of part (f). This was shown in part (a).
Proof of part (g).

Tk(c)− xi = c+ hk(c) Rk(c)− xi

= hk(c)
N∑
j6=i

p2k(xj) wj
‖xj − c‖

(xj − c)

+

(
hk(c) p2k(xi) wi
‖xi − c‖

− 1
)
(xi − c).

Since xi is not optimal, we have∥∥∥∥∥ N∑
j6=i

p2k(xj) wj
‖xj − xi‖

(xj − xi)

∥∥∥∥∥ > p2k(xi) wi.
Hence, there exist δ ′ > 0 and ε > 0 such that∥∥∥∥∥ N∑
j6=i

p2k(xj) wj
‖xj − c‖

(xj − c)

∥∥∥∥∥ ≥ (1+ 2ε) p2k(xi) wi

for ‖xi − c‖ ≤ δ ′.

By the definition of hk, we have

lim
c→xi

hk(c)p2k(xi) wi
‖xi − c‖

= 1.

Hence, there exists δ ′′ > 0 such that∣∣∣∣hk(c)p2k(xi) wi‖xi − c‖
− 1

∣∣∣∣ < ε

2(1+ ε)
for 0 < ‖xi − c‖ ≤ δ ′′.

Set δ = min(δ ′, δ ′′). For 0 < ‖xi − c‖ ≤ δ, we have

‖xi − Tk(c)‖ > hk(c)(1+ 2ε)p2k(xi) wi −
ε

2(1+ ε)
‖xi − c‖

>

(
1−

ε

2(1+ ε)

)
(1+ 2ε)‖xi − c‖

−
ε

2(1+ ε)
‖xi − c‖

= (1+ ε) ‖xi − c‖.

Since ‖xi − c‖ > 0, (1 + ε)t ‖xi − c‖ > δ for some positive
integer t and hence ‖xi − T sk(c)‖ > δ for some positive integer s
with ‖xi − T s−1k (c)‖ ≤ δ.

Proof of part (h). For c not a data point,

Tk(c) =
N∑
i=1

(
p2k(xi) wi
‖xi − c‖

/ N∑
m=1

p2k(xm) wm
‖xm − c‖

)
xi

=

N∑
i6=j

p2k (xi) wi
‖xi−c‖

(xi − xj)+ xj
N∑
i=1

p2k (xi) wi
‖xi−c‖

N∑
m=1

p2k (xm) wm
‖xm−c‖

∴ Tk(c)− xj =
N∑
i6=j

p2k(xi) wi
‖xi − c‖

(xi − xj)
/ N∑
m=1

p2k(xm) wm
‖xm − c‖

,

∴
Tk(c)− xj
‖xj − c‖

=

N∑
i6=j

p2k(xi) wi
‖xi − c‖

(xi − xj)
/
p2k(xj)

×wj

(
1+
‖xj − c‖
p2k(xj) wj

N∑
i6=j

p2k(xi) wi
‖xi − c‖

)
.

Taking the limits of the lengths of both sides,

lim
c→xj

‖xj − Tk(c)‖
‖xj − c‖

=
‖Rjk‖
p2k(xj) wj

.
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Proof of part (i). With the possible exception of c0k , the sequence
{crk} lies in the convex hull of vertices, a compact set. By the
Bolzano–Weierstrass theorem, there exits a convergent subse-
quence {c`k : ` = 1, 2, . . .}, such that lim`→∞ c

`
k = c

∞

k . We prove
that c∞k = c

∗

k .
If c`+1k = Tk(c`k) = c

`
k for some `, then the sequence repeats

from that point and c∞k = c
`
k . Since c

`
k is not a data point, c

∞

k = c
∗

k
by Theorem 1(c).
Otherwise, by Theorem 1(d),

fk(c0k) > fk(c
1
k) > · · · > fk(c

r
k) > · · · > fk(c

∗

k). (40)

Hence

lim
`→∞

(
fk(c`k)− fk(Tk(c

`
k))
)
= 0. (41)

The continuity of Tk implies

lim
`→∞

Tk(c`k) = Tk(c
∞

k ) (42)

we have

fk(c∞k )− fk(Tk(c
∞

k )) = 0. (43)

Therefore, by Theorem 1(d), c∞k = Tk(c
∞

k ). If c
∞

k is not a data
point, then c∞k = c

∗

k by Theorem 1(c).
In any event, c∞k lies in the finite set of points {x1, . . . , xN , c

∗

k},
where c∗k may be a data point.
The only case that remains is c∞k = xj for some j. If xj 6= c

∗

k ,
we first isolate xj from the other data points (and c∗k if it is not a
data point) by a δ-neighborhood that satisfies Theorem 1(g). Then,
it is clear that we can choose our subsequence c`k → xj such that

‖xj−Tk(c`k)‖ > δ for all `. Thismeans that the ratio ‖xj−Tk(c
`
k)‖

‖xj−c`k‖
is un-

bounded. However, this contradicts Theorem 1(h). Hence, xj = c∗k
and the theorem is proved. �
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